大数据的下一步棋 把握大数据的前景
由于物联网和移动设备的快速发展,人类社会在过去两年里生成了全世界90%的数据。数据收集、存储和分析的成本骤降。
如今,各个行业都在借助由数据驱动的行业洞察,获得竞争优势。
大数据的未来前景更加宏大:为体量最大的行业拓宽视野,解决世界上一些最复杂的难题。
创业者和投资人应该从何种宏观角度来把握大数据的前景?
文内数据为全球及美国市场情况,但相信对于中国市场有同样的借鉴意义。本文PPT来自硅谷银行分析团队(SVB Analytics)最新的分析报告《大数据的下一步棋:把握大数据的前景》,由浦发硅谷银行提供。文字部分由网易创业Club解说。
第一部分:数据激增
由于处理成本、存储成本的大幅下降,网络传输能力的大幅增强,数据的产生、处理和收集数量都在呈现指数级的增长趋势。
数据人才需求四年翻三番。说明有更多的商业场景需要进行数据的收集、分析。这和始于2010年左右的移动端全球性普及趋势基本重合。考虑到企业级服务的兴起,未来的数据人才需求会更加旺盛。
第二部分:大数据业务成为美国VC的关注重点
针对大数据公司的风险投资从2010年的10亿美元增长到了2014年的50亿美元,年内交易数量从150增长到了500起。
尽管现在大家都开始说B2B的风口来了,事实上我们从数据可以看到,美国风险投资界在过去5年里对大数据分析公司的投资额度增长了大约17倍而对B2B服务型公司的投资额度仅仅增长了3倍。
当然,由于美国B2B服务的风险投资体量本身就很大,所以这并不是特别直接的对比方式。
不过,这也能够从一个侧面体现出大数据业务的发展势头。
在不同的融资规模所代表的不同融资阶段里,大数据公司的估值水平都明显高于科技类公司的平均估值。
这说明投资人非常看好大数据领域从而可以容忍较高的进入价格。
需要提醒注意的是,所有各个融资阶段的大数据公司估值都高于科技公司平均估值水平。
第三部分:大数据2.0,一个更大的漏斗模型
图中给出的是一个漏斗模型,相信搞产品、搞运营、搞销售、搞战略的同学们对此并不陌生。
由于IoT(物联网)的逐步成为现实,漏洞入口的数据来源正在以及将要呈现爆发性的增长。
物理硬件性能以及计算能力的高速发展让数据的收集、存储和处理成本大幅下降,数据处理方式和速度大幅提升,这让可以被处理的数据数目和类型发生不可想象的增长和变异。
由于上述一系列的能力提升背景,“传统”行业的数据分析范围和应用场景更加多样化,分析价值也越来越大。
大数据应用行业举例:零售、网络安全、广告、金融服务、农业、旅游与住宿、医疗健康、能源、金融服务。
可见,大数据可以应用的行业覆盖了2B、2C的多个甚至是所有的重要领域。
使用场景举例,硅谷银行在这里举了广告精准投放、网络欺诈安全、传感器–运营优化三个例子。我们已经可以在国内看到在几方面做的比较突出的大数据及SaaS服务创业公司了。
第四部分 大数据的跨行业应用,创业投资机遇在哪里?
硅谷银行将大数据的针对不同行业以三个维度做了成熟指数测算。
三个维度分别是:对数据的监管程度;数据捕获的难易度;技术整合的程度。
前面两个维度反映了数据来源的丰富及深入度,如果太难的话,在应用方面会受到限制。
对于体量庞大的行业而言,目前的大数据应用成熟度越低,未来的发展空间越大。
相对成熟的市场:
相比较而言,网络安全、广告、旅游住宿行业是“较小”的市场(2000-3000亿美元),它们的大数据渗透率比较高。
零售业由于线上零售发展多年,因此是一个有复杂大数据分析积淀的巨型市场(9000亿美元)。
更有潜力的市场:
农业虽然是个“小市场”但受制于数据收集的难度、分析技术的限制,目前还处于比较初期的阶段。
金融服务、医疗保健这样的大市场显然是所有人都会关注的大数据应用市场。但由于对数据的监管力度大、数据的获取难度高,所以仍然是一个发展远不完善的大数据市场。
这里,较为成熟的广告行业大数据早期公司获得风投的青睐越来越少了,而医疗健康类的早期大数据公司则开始获得更多风投的青睐。
这个趋势和各个行业大数据应用的成熟度密切相关。
风投在考虑趋势的时候会密切关注潜在发展空间是否足够大和限制因素是否可以被解决。
第五部分:总结,云和机器学习是大数据的未来
所谓“云”,要看大数据公司的云是否能够把目标客户放在公有云上的数据联动起来形成一个生态系统。
所谓“机器学习”,要看大数据公司的机器分析能力是否会随着数据数量和类型的增加、硬件性能的提升而更具洞察力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10