拥抱大数据需要大智慧
近年来,有关大数据的热点话题一浪高过一浪,关注大数据应用的人也越来越多。总体来说,人们对大数据的前景持乐观态度,比如谈到大数据的技术特征,人们最容易想起的就是4个“v”:vast(数量庞大)、variety(种类繁多)、velocity(增长迅速)和value(总价值高)。这些都没错,但仔细一想,它们都是偏重说明大数据的正面优势的。但其实,大也有大的难处,大数据也不可避免地存在着一些负面劣势。结合笔者的从业经验,大数据的负面劣势可以概括为4个“n”,下面逐一说明每个n的含义。
inflated大数据是肥胖的。大数据的大不仅仅体现在数据记录的行数多,更体现在字段变量的列数多,这就为分析多因素之间的关联性带来了难度。哪怕是最简单的方差分析,计算一两个还行,计算一两百个就让人望而生畏了。
unstructured大数据是非结构化的。大数据的结构也是非常复杂的,既包括像交易额、时间等连续型变量,像性别、工作类型等离散型变量这样传统的结构化数据,更增添了如文本、社会关系网络,乃至语音、图像等大量新兴的非结构化数据,而这些非结构化数据蕴含的信息量往往更加巨大,但分析手段却略显单薄。
incomplete大数据是残缺的。在现实的世界里,由于用户登记的信息不全、计算机数据存储的错误等种种原因,数据缺失是常见的现象。在大数据的场景下,数据缺失更是家常便饭,这就为后期的分析与建模质量增加了不确定的风险。
abnormal大数据是异常的。同样,在现实的世界里,大数据里还有不少异常值(outlier)。比如某些连续型变量(如一个短期时间内的交易金额)的取之太大,某些离散型变量(如某个被选购的产品名称)里的某个水平值出现的次数太少,等等。如果不删除,很可能干扰模型系数的计算和评估;如果直接删除,又觉得缺乏说服力,容易引起他人的质疑。这使得分析人员落到了一个进退两难的境地。
如果不能处理好这些不利因素,大数据应用的优势很难发挥出来。想要拥抱大数据,并不是一项在常规条件下数据分析的简单升级,而是一项需要大智慧的综合工作。STIR(唤醒)策略是笔者在实践工作中提炼出来的、能够在实际工作中有效克服大数据负面劣势的应对方法。具体来说,STIR策略包含了四种技术手段,目前都已经有机地整合在统计分析与数据挖掘专业软件JMP中了,它可以用来解决上文提出的四个问题,下面将分别说明。
Switching Variables切换变量
它是用来解决大数据“残缺”问题的。通过“列转换器”、“动画播放”等工具,海量因素之间的关联性分析变得十分简单、快捷,还可以根据需要对关联性的重要程度进行排序,大数据分析的效率由此得到大幅提升。
基于JMP软件的关联性分析筛选的界面
Text Mining文本挖掘
它是用来解决大数据“非结构化”问题的。通过先对文字、图像等新媒体信息源进行降维、去噪、转换等处理,产生结构化数据,再用成熟的统计分析和数据挖掘方法进行评价和解释。这样一来,大数据的应用范围得到了极大的拓展。
基于JMP软件的文本分析结果的最终展现界面
Imputation缺失数赋值
它是用来解决大数据“残缺”问题的。在有missing data的时候,我们并不完全排斥直接删除的方法,但更多的时候,我们会在条件允许的情况下,用赋值的方法去替代原先的缺失值。具体的技术很多,简单的如计算平均值、中位数、众数之类的统计量,复杂的如用回归、决策树、贝叶斯定理去预测缺失数的近似值等。这样一来,大数据的质量大为改观,为后期的分析与建模奠定了扎实的基础。
Robust Modeling稳健建模
它是用来解决大数据“异常”问题的。在融入了自动识别、重要性加权等处理手段后,分析人员既直接消除了个别强影响点的敏感程度,又综合考虑了所有数据的影响,增强了模型的抗干扰能力,使得模型体现出良好的预测特性,由此做出的业务决策自然变得更加科学、精准。
总之,我们必须要对大数据有一个全面、客观的认识。只有在不同的业务和数据背景下采用不同的战略战术,才能在大数据时代,真正发挥大数据的杠杆作用,有效提高企业的运营效率和市场竞争力。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20