大数据孤岛会出现吗
3月份时,我和IBM全球副总裁兼大中华区软件集团总经理胡世忠,IBM软件集团大中华区战略及市场总监吴立东有过一次交流,谈论的焦点可以概括为围绕大数据的5个为什么,不仅包括大数据作为一个热门行业本身催生的机会,IBM的大数据战略,也包括大数据所带来的一些深刻影响,比如企业是否应该将现在在第三方平台上实施的交易转移到自家门户,是否会受制于数据孤岛等,这些或许能透露出面向云服务时代的IBM到底在想什么和做什么。
之一:大数据是不是泡沫?
目前很多所谓的大数据创业者,似乎就是对微博等社交网络的分析信息做一些分析,然后帮助促进销售,但显然这不是全部,IBM这样的软硬件公司似乎才是最大受益者,我甚至开始怀疑这个概念一开始就是软硬件巨头们为了卖更多产品而发明的。
胡世忠同意“IBM会是最大受益者之一”的说法。不过他也认为,小公司在一些细分领域也会有很多机会,比如如何在不同种类的数据之间建立可分析性,对其进行分析等,其中的一些会获得独立的生存空间,但很多可能会被收购。
“过去18个月中有比我想象中更多的国外的小公司进中国来,它们有一些是专门做数据的日志、数据的来源等等。在这里,每一个障碍都是机会。”
但这个行业处理的对象处于快速变化中,比如移动数据的涌现,可能客户更愿意和IBM这样的整体解决方案公司打交道,这也是小公司的最大风险——它们可能稍有不慎就会被潮流抛弃。IBM将在很多领域扮演收购者角色,过去已经收购了超过30家与大数据相关的公司。
IBM在这方面最早收购的是Cognos,是做一般分析型的。现在则转向收购专业的,解决大数据领域特定问题的公司,要不然就是解决行业问题的,要不然是数据的分类问题,或者是一些数据存储上的技术问题,或者是数据挖掘,越来越窄、越来越精。
“这让我们提供给客户、帮助客户解决问题的类型越来越多,而不是用同一个东西来解决所有问题。”
之二:企业最终会逃离第三方电商平台,回到自己的门户?
淘宝去年的交易额已经超过1万亿元,这个行业的高增长还在持续,当大数据成为一个大问题时,企业是否需要对其电商模式进行重新定位?据两位采访对象介绍,他们掌握的信息是,国外一些企业已经开始将交易环节从亚马逊撤出,而转向自己的门户,因为它们不愿意失去客户的第一手信息和客户关系。
而IBM显然正努力让中国的企业也意识到这点,因为这样一来它们将更需要IBM这样的解决方案商的支持,这是一个大生意。
“我们现在跟每个企业谈智慧商务的时候,开始向他们介绍把这个东西放第三方平台上,放在淘宝天猫的代价是什么,你不知道谁买了东西,不知道他的爱好是什么,没有办法让人知道你的产品是什么。另外,你设计的产品不见得是客户想要的,这将造成库存。”
之三:第三方数据运营是个大生意?
SAP正在做一项尝试,即鼓励一些企业将自己的数据放在一个公共平台上,这样就能发挥数据的优势——因为当每家公司将自己的数据共享出来时,就更有机会建立起大数据的优势,当这些信息仅仅是每家企业的私有财产时,是一座座数据孤岛。
IBM也会这样做吗?胡世忠的回答是:第一,在国内还没有听过有这种需求,没有碰到过;第二,如果客户有这个需求,IBM可以做到这一点。不过在国外,IBM已经开始为企业提供大数据运营服务,帮助其应用数据。
“但在国内还没有,因为很多企业都有很多自己的低成本IT人员,还需要将这些人员的能量尽可能地发挥出来。”
之四:大数据会让行业的界限变得更模糊吗?
一个行业和另一个行业的界限,在很大程度上是因为知识和技术的界限造成的,大数据正使界限变得模糊,比如一些物流公司正介入电商领域,阿里巴巴同样是金融领域强大的竞争者。
这种趋势同样在IBM身上发生着,比如奥美是IBM传统的公关公司,每年给它一笔费用,但现在变成了IBM在EMM(企业营销管理)领域的合作伙伴,而其传统的客户苏宁则有可能变到IBM下一代的产品合作伙伴,或其渠道合作伙伴。
之五:大数据孤岛会出现吗?
那些拥有大量关键数据的社交网络和电商交易平台,都将数据列为其私有财产,希望借此使其成为大数据的赢家,而这将导致新的信息孤岛出现。
两人的看法是,一方面,Facebook和Twitter已经带头开放部分数据给第三方公司,因为它们自身也能从这种开放中受益,它们不可能自己进行所有的分析和运用,而更多的企业也最终会走向这条道路,但他们的开放不会是无偿的,他们会希望从开放中受益。
另一方面,虽然微博、微信等外部数据是重要的数据来源,但大多数客户已经有足够多的内部数据,完全可以从内部数据应用开始,他们需要做的,是制定一个统一的管理者,以协调各个部门的行动。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20