汽车行业普遍存在的数据管理应用难题
汽车行业普遍存在的数据管理应用难题
信息系统众多,但信息孤岛化严重
信息孤岛源自于传统分工式管理的劣根性,相关的概念和解决方案已在世多年,但仍然无法在汽车企业大规模地得以改善。从新华信近年对汽车行业的调研结果来看,汽车企业(特别是汽车销售公司)内部的信息化系统众多,如各个职能业务所使用的CRM、财务、HR、ERP、SCM等业务系统,经销店端使用的DMS系统,以及销售、售后、市场,财务、汽车金融等各部门的业务子系统等(如大客户管理、金融保险、二手车、保修、零部件系统)。大大小小的系统在诞生伊始就背离了“整体规划、分步实施”的大原则,功能和应用相互独立、技术和平台兼容性差,使得系统之间数据的共享和整体应用成为难题。
系统的纷繁众多,必然导致数据源的非惟一性或者说多重性,企业的各级人员都无法从单一的视角来维护、管理和应用相关的数据。对于相同的信息,企业需要在各系统中重复录入,例如车企每新增加一家经销店,在数据的一致性没有任何约束的前提下,其开业日期、法人代表、地址、注册金额等基本信息都需要在不同业务系统里重复记录,既增加了维护的难度,也浪费了人力和资源。而假如随着时间的推移,该经销店的信息也会不断更新,车企的某些子系统也随之调整,而另外一些子系统却未能及时更新,那就会在不同的数据的记录之间造成不平衡关系。
业务系统之间的独立性,导致部门间的数据壁垒和信息孤岛的大量存在,跨业务主题的统计、分析和研究操作难度极大。例如销售部门希望获取市场数据,或售后部门希望获取供需相关数据,这期间会涉及到各种流程制度、技术环节甚至是人事方面的障碍,最后往往费尽周折,也难得其效。
系统设计欠完善,数据完整性差
由于汽车行业成长过于迅猛,一些业务系统在车企成立伊始即开始使用,其设计也只为满足当时的业务需求,而对系统的兼容性和扩展性没有做过多地考虑和预测。随着时间的推移,车企的业务流程和管理体系趋于复杂与完善,导致业务系统的功能性不能满足当前业务的需要,系统的陈旧与落后日益凸显。此时,大部分车企出于使用习惯和财务预算的考虑,都不愿意更换、更新原有的系统,因此便在原系统的基础上修修补补。而这种修补工作一但考虑不周,便会出现数据应用前后衔接不畅的问题,例如出现同一数据表中的同一字段,在系统改善前/后用来存放完全不同的信息,造成历史信息的缺失或前后不一致问题等,基于此的分析和应用更无从谈起。而另外一些车企则在业务系统方面舍得投入,进行大刀阔斧式的改革,对先前的系统基本否定并推倒重来,而在招投标时可能会选择不同的系统供应商,从头设计一套新的系统。在这个过程中,车企如果没有一定的预见性眼光把数据割接工作做扎实,便会造成新老系统间的数据不一致,甚至不能进行匹配,这也就相当于历史数据的缺失,间接导致数据的完整性变差。
基础数据维修不够,开放过多手写权限,数据质量差
车企业务系统的数据库中存在着大量的基础数据,在数据结构设计中称之为字典表或属性表。这些信息来自各个业务部门,整体记录了车辆型号、车辆颜色、配件种类及名称等基础信息。但由于对数据的规范性重视和强调不够,业务部门并不会指派专人负责此项业务,往往一次录入后便无人问津,更谈不上相应的检查和审批程序。最终的结果便是数据库中的记录杂乱无章,别字、错字、手误等层出不穷;而如果维护人员离职或换岗,其后真实的数据更无处可考。例如在某车企的数据库中,车身颜色有几百种(如针对白色,就会有White、WHITE、白色、珍珠白等多种重复性描述),车辆型号有上千种,零配件甚至近万种,如此的数据垃圾将会导致一连串的业务逻辑问题。一个典型的场景就是经销店在终端数据输入时,由于基础表的不规范性,使得车辆型号等信息的录入无法用钩选的方式实现,索性为经销店的人员开放了人工录入的权限,如此恶性循环下去,数据库中的记录更是五花八门、毫无规章,甚至形同垃圾。
数据应用目的性不强,数据利用率不高
数据管理的最终目的还是为了后端的数据应用,如果没有强劲的应用需求,那么数据管理也会逐渐流于形式。车企(尤其是汽车销售公司)在数据管理方面的投入,一方面要满足日常操作型业务的需求,一方面要为营销应用服务,还要为企业的经营决策提供数据支持。例如在营销应用端,如果营销部门对数据库营销的需求不旺盛,即使数据库中的数据规范性、准确性、及时性等指标极差,营销部门也会熟视无睹,而数据管理部门也就更无心于数据质量的维护;而在车企经营决策支持方面,如果决策层对数据决策和科学决策的认识和需求不足,技术部门也就无法有效地构建满足不同业务主题需求的数据仓库(数据集市),以服务于经营决策支持系统。
在数据的利用效率方面,虽然车企内部存在众多的系统,也在长时间内积累下海量数据,但是它们更多的时候是以档案资料的形式静态的存在,没有实现从数据到信息的提升。即使每个部门都配备专门的人员花费大量的时间制作日报、周报、月报、季报,工作冗繁而费时,其本质也仅仅是为了提交会议报告而制作报表,数据和信息还没有渗入到日常的工作与管理中去,各级人员依旧根据经验和直觉来发现和判断问题,造成数据资源的浪费和利用率的低下。一个典型的场景是,公司级会议上各部门都会提交厚厚的、制作精美的报表,但是各部门间的数据普遍存在着矛盾与误差,导致决策层需要浪费大量的精力在这些数据的海洋中自己去甄别和判断正确的信息。在这种情形下,数据不能赋予决策层更好的洞察力与控制力,反成沦为鸡肋似的负担。
针对数据的管理体系不健全,细节欠思考
数据管理,究其根本仍然是人、系统、管理体系三者的结合,缺一则废。从数据的采集、整理、整合、分析、应用、反馈这个完整的业务链条来看,管理的思想、流程和制度贯穿始末,无可回避。例如,汽车行业存在的一个普遍现象是,大大小小的经销商,由于种种利益的驱使,在向车企填表销售和售后数据时,往往大量作假;而车企也不服气,设定各种奖惩措施,以打击经销商的气焰。在这个关键点上,如果管理措施不当,经销商往往会更加趋向于“亲奖避惩”,更变本加厉地作假,车企的种种措施反而适得其反。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30