传统零售与O2O零售之间差着一个“大数据”
O2O火了,也让更多人将目光聚焦到了实体零售,国内电商的强大有目共睹,但近期的“关店潮”证明O2O的另一只腿依然是“瘸”的。
错过电商化的时代,O2O时代很多实体零售商都不甘就此消亡,大企业纷纷开始自救,苏宁2011年就开始发力线上,近期更是联手阿里,万达拉来百度苏宁做非凡电商,沃尔玛各种折腾最终将1号店收归囊下,朝阳大悦城建立“悦界”从Shopping Center向Lifestyle Center快速转型……大公司自救,中小实体零售靠平台“拥抱互联网”,于是饿了么、美团外卖聚集了一大批餐饮店铺,唯品会、聚美优品是服饰类零售商的聚集地……
与其艳羡电商覆盖面大,不如保有自己本色
全民“电商化”带来了什么呢?移动支付成了“抢手饽饽”,前有阿里布局支付宝,后有微信的钱包,百度、京东也各有自己的移动钱包,大众点评的张涛也表示转型做移动支付……大家纷纷为O2O铺路是为实体零售商创造了复兴的机会,但扎堆做移动支付,并不能满足实体零售扭转“O2O”劣势的愿望。
实体零售与电商最大差别之一在于:电商覆盖面积往往远广于实体零售。一家中小型超市的覆盖面积是2500㎡,基本是附近居民步行10分钟或5分钟自驾的距离,理论上来说淘宝的小店铺的覆盖面积也远大于国内任何一家大型商场。实体零售既然不能做大,与其临渊羡鱼,不如专心经营自己那一亩三分地,做“精”用“小而美”吸引用户。
像现在非常火的黄太吉、雕爷牛腩,以及西少爷,是单以味道取胜吗?黄太吉的成功,营销的因素远高于商品本身价值,不仅利用微信微博与粉丝大量互动,同时还针对三里屯特定的白领消费场景打造自身服务特色,一家满足了用户所有需求的店铺,顾客又怎会去另一家店“探险”?
大数据让实体零售“小而美”不是梦
如何做到“小而美”呢?目前最便捷的方法就是大数据。
马云在去年互联网大会上曾说:“上世纪做企业一定要做好IT(Information Technology),这个世纪做企业要做好DT(Data Technology)。“DT就是数据技术,对实体零售而言,大数据就是粉丝,就是精准营销。
“客来乐”支付终端近期推出的线下收银台整体解决2.0方案也暗合大数据时代的精准营销,这套方案的收银终端有两个显示屏的体态装扫码器,与人体呈90度的屏幕显示二维码,以及优惠券和优惠活动,与人体称呈60度的屏幕用来扫码,主扫与被扫可以在一个机器上完成,收银员的操作与传统方式无异,避免了收银环节的核对与找零。
简化收银环节是一个优势,最值得实体零售关注的创新是收银打印出的发票上附有店铺的微信公众号二维码,同时使用微信支付,在手机端的支付面会提示顾客是否关注该企业微信公众平台,此举目的是收集用户数据以便最终可以达成精准营销等行为。据客来乐CEO介绍,目前这款产品已接入200多家支付方式,此前曾有店铺25%的进店消费用户选择关注该店铺公众号,这部分用户就成为了该店铺的核心用户,利用微信公众号可以向这些用户推送优惠券、店铺最新活动,最终形成自己的粉丝圈。
日本实体零售遭电商冲击小,秘诀亦在数据收集
为什么电商对日本实体零售影响不大?也是因为大数据的收集。
日本7-11株式会社培训部部长蒲哲介绍到:一是7-11整体销售额的60%来自自主研发,每周推荐的新商品约占100 SKU,行业壁垒较高,其二是因为日本传统零售商的互联网+起步比国内早十年,实体零售商已经习惯用互联网收集用户数据,从而形成精准营销,第三点是不仅对中高龄的用户会推荐产品,针对新生用户,更是与之不断互动,且通过各种方法将年轻用户吸引到店里来,譬如购买市面上的热门游戏,以供到店用户免费下载。7-11也因此越做越大,其地位难以被电商撼动。
各种杂、大、全的网购就像快餐,适于应急但由于“不接地气”所以与用户的感情难以培养,但实体零售却很容易利用大数据了解用户需求从而建立精准营销,当你常去的店,店主记住了你吃饭不喜辣,喝水要温,喜欢靠窗的座位······他已不仅是在满足用户的消费需求,而是在满足用户情感需求,这种顾客又怎会不是“老顾客”呢?
最后,用北大零售业研究中心主任王向阳的对实体零售的一句话结束本文:不是电商太强,而是实体零售太弱。请实体零售快马追上吧,否则,你做不到的,你的竞争者会做到!
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28