制约商务智能在制造业大规模应用的因素
商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
一、国内市场
目前,国内商务智能(BI)的竞争者主要分为三类:国外厂商、国内厂商、外围厂商。
1、国外厂商:加速并购,完善产品
近几年,国际商务智能(BI)厂商加速了完善自身产品线的进程,表现为近几年商务智能(BI)领域的并购越来越热,新解决方案的不断推出。
对于国内市场,这些国际巨头已经认识到其潜力巨大,在过去的几年里,已经有很多国际巨头进入中国,成立办事处和研发中心,加强了国内市场的投入:
SAS、Brio很早就进入中国,开始攻城掠地。
Cognos由国家信息中心的北京优信佳公司作为其总代理,在国内销售、实施其产品,2006年7 月18 日,Cognos 公司宣布在中国发布Cognos 8BI解决方案(下称“Cognos8”)。
MicroStrategy在2003年11月6日宣布,通过其在大中国区的惟一总代理FirstBI公司代理销售其软件和服务,推广它的中文版产品,向中国企业提供数据分析软件。
Business Objects 在2003年底并购了 Crystal
之后,便紧锣密鼓地开始在中国市场布局。2004年1月在上海成立大中华区,紧接着推出了整合之前的过渡产品 Crystal Enterprise10
和Business Objects 6.5,2005年年初推出了两家产品整合后的 XI 平台。[page]
2、国内厂商两手准备
几年前,国内厂商通过与国际商务智能(BI)厂商合作代理其产品,积累了在商务智能(BI)领域产品、实施方面的经验,而现在多数国内厂商已有了自身独立的商务智能(BI)产品,虽然在功能上还需要不断完善,但已经迈出了坚实的一步。如在2003年Brio与金蝶达成战略合作伙伴关系,金蝶作为Brio的顶级代理商,把Brio
Performance Suite捆绑到金蝶的企业信息化整体解决方案中,在合作近1年后,金蝶通过OEM方式推出了自己的EPM产品。
面对国际商务智能(BI)巨头的竞争,国内厂商如金蝶、用友、创智等一方面同这些巨头建立良好的合作关系以维持发展,另一方面也在积极提升产品和解决方案的内在品质,向客户提供更完美的决策支持服务,争取与国外厂商一比高低。
3、外围厂商:渗透进入
外围的ERP等管理系统厂商显然不甘心看到众多专业BI厂商独自瓜分市场份额,于是他们首先在已有的ERP、SCM、CRM等客户上做文章,在ERP等产品上推出了集成的BI产品,在市场推广上也着重强调其系统的完整性与集成性,这让其产品在销售上取得了一定程度的优势。如SAP推出了其商务智能(BI)的产品SAP BW,重点强调SAP BW系统与R/3 ERP系统的完整性与集成性的优势。
同时,笔者预计,在未来的几年内,将会有为数不少的企业会进入这个市场,这个市场的竞争也将更加激烈。
二、国内制造业BI的应用
虽说几乎每个中国的企业都需要商务智能,但目前国内的应用主要集中在金融服务业(如银行、保险等)、电信业、航空业等资金充足、信息化起步较早、迫切需要数据分析的行业(这也是目前国内BI厂商关注的重点行业),国内的制造业企业在信息化建设方面起步较晚,而商务智能(BI)真正发挥其作用是需要底层的数据作为支撑的,否则就是“无源之水”,企业只有在应用ERP、CRM、SCM等系统3年以后,数据积累到一定程度以后,才会选择使用商务智能(BI)系统,商务智能(BI)系统在这时候也才会显现其价值。笔者认为制约商务智能(BI)在国内大规模应用的条件主要有:
1、目前,国产的商务智能(BI)系统在功能上还很不完善,与国外软件相比有较大的差距。而国外软件在价格上普遍较高。
2、国内的成熟、专业的商务智能(BI)实施顾问较少。
3、销售渠道的建立。目前,多数商务智能(BI)厂商是通过分公司或办事处来销售的,而未来国内制造业企业多数需要本地化服务,这种模式必将改变,但商务智能(BI)的销售、服务要求代理商要有很强的能力,如何选择、培养、发展这些代理商将是国内商务智能(BI)厂商面临的一个问题。
4、商务智能(BI)系统最昂贵的地方不是平台,而是模型,但目前由于国内市场应用BI的企业并不多,应用深入的更少,应用基础也比较薄弱,即使拿来国外先进的商业模型也不一定运转起来,所以尽快建立各种适合国内企业特色的模型是各商务智能(BI)厂商未来要投入大力解决的。
商务智能(BI)要想在国内制造业中大规模的普及,必须要解决好以上问题。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21