物流企业对商务智能系统的需求
商务智能的发展已经有一段时间了,世界各国对商务智能的认识和应用情况有很大差别。美国和欧洲的企业对商务智能工具的认识和使用较早,许多企业利用商务智能把数据转换成知识,并用来支持决策。商务智能已经成为企业战略性的数据管理、决策分析和绩效提升的“秘密武器"。商务智能在中国的发展尚处于起步阶段,大部分企业对商务智能仍然缺乏必要的了解。商务智能在生活消费品行业、零售业还没有足够能力实施。但随着因特网、数据储存、数据仓库和管理应用软件等方面迅速发展,市场对商务智能的潜在需求量很大,商务智能将会迈向更高的层面。
发达国家的私营企业和公共机构利用商务智能来提高效率、效果和竞争力的历史已经有很多年了,然而讲述商务智能在发展中国家(包括中国)的发展情况的故事却鲜有所闻。商务智能技术在中国的应用刚开始起步。一些有数据积累和信息化管理经验的企业刚刚开始进一步提升其管理和决策的水平,更深入地挖掘数据、寻求规律。
以往企业大多依托于一些传统的管理软件如ERP、CRM或者一些工具ETL报表来提高交易活动中的效率,但这些纯运营层面的软件不能对企业产生的大量数据进行分析,难以满足企业日益增长的对不同语言、不同标准、不同设备和管理的整合。作为一种着重于数据收集、管理和分析的信息技术,商务智能满足了企业管理整合、决策支持需要。相应于商务智能发展的不同阶段,在实践中商务智能的应用领域主要有横向应用(不考虑行业之间的差异)和纵向应用(考虑行业之间的差异)两方面。商务智能的横向应用主要是利用商务智能形成分析型软件,典型的有:商务智能和企业资源规划结合形成分析型ERP;商务智能和客户关系管理结合形成分析型CRM;以及其他一些独立的分析管理软件。各个行业有自己的特点和要求,行业与行业之间存在巨大差异,商务智能解决方案也从横向应用转向纵向应用,商务智能逐渐融入了金融服务、电信业、零售业、交通运输业等行业经营活动中;商务智能解决的典型商业问题包括:直接营销、面向细分市场客户群体划分、用户背景分析、交叉销售等市场分析行为,以及客户流失性分析、客户信用评估、欺诈发现等。
在中国,商务智能的需求越来越大,各行各业已经认识到商务智能的重要性,最近几年,电信行业、金融服务行业已经开始了自己的商务智能系统的建设,在电信行业,已经和正在完成自己的经营分析系统,在银行也开始了数据仓库的建设。在很多的加工制造业也开始了统计分析系统等,这些都是商务智能的一部分。
在当今瞬息万变的社会中,只有智能驱动型的企业才能在激烈的竞争中取胜。现代物流系统是一个庞大复杂的系统,包括运输、仓储、配送、搬运、包装和再加工等诸多环节,每个环节信息流量十分巨大。尤其是现代信息化物流网络体系的应用使原来数据库的规模不断扩大,产生巨大的数据流,使企业很难对这些数据进行准确、高效的收集和及时处理,以此帮助决策者做出快速、准确地决策,实现对物流过程的控制,降低整个过程的物流成本。商务智能能够帮助物流企业及时、准确地收集和分析客户、市场、销售及整个企业内部的各种信息,对客户的行为及市场趋势进行有效的分析,了解不同客户的爱好,从而可以为客户提供有针对性的产品和服务,大大提高各类客户对企业和产品的满意度。物流企业对商务智能的需求主要表现在以下几个方面:
(1)从现状来看,我国物流企业运作效率低、成本高,决策缓慢。由于缺乏科学的物流管理方法和技术,导致市场定位失误、库存过高、运输成本高、资金周转率缓慢等严重问题。最近一次中国物流市场供需状况调查报告显示85%左右企业商品库存期1周至3个月。现实表明我国物流企业需要像商务智能这样的技术支持。
(2)消费者需求逐渐向多样化、个性化发展。随着国民收入水平的提高,人们对物质产品的需求表现多样化和个性化的特点,对商品品种、质量以及售后服务的要求越来越高。这对进货方式、配送产生深刻影响,订货周期越来越短,频率越来越高,配送要求也不断提高。科学的管理和快速决策变得更加重要。
(3)物流的过程同时也是商流、资金流和信息流的过程。现代物流要求将这些过程有机的统一起来,减少重复、非效率、不能增值的活动,提高物流效率和物流服务的可靠性。
(4)物流企业联系着生产和销售环节。服务的延伸对物流信息集成功能提出了更高的要求。物流企业不仅要做好内部管理工作,为企业内部从管理层到一般员工提供适时准确信息,促进企业内部效率提高。同时还肩负为企业外部用户如合作伙伴、供应商和客户提供及时、有效的信息资源,通过信息共享提升他们的价值。
(5)现代物流企业打破传统束缚,具有勃勃生机,同时面临的竞争对手也日趋增多,国家也在酝酿把国外先进的物流企业引入国内物流竞争机制。我国物流企业如何才能利用后发优势,抓住机遇,领先对手而不是被对手甩下?从日常交易数据中获得有价值信息,快速决策是成功的关键因素之一。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20