大数据的五大神话
尽管大数据正在被广泛的讨论,目前看来,其仍然是一个很大的谜一样的神话。事实上,围绕大数据的误解似乎已经达到了神话般的境界。如下便是五大神话。
1、大数据仅仅是海量的数据量
容量仅仅是界定大数据定义的关键要素之一,而对于大数据的定义至少有三个方面的重要要素。其他两方面分别是种类和传输速度。与后两者相结合,便是Gartner调研公司的道格?兰尼最初在2001年的调研报告中给出的关于大数据的概念。
一般来说,专家们普遍认为PB级的数据为大数据的起点,尽管这一指标仍然是一个变化中的目标。因此,虽然容量这一因素是非常重要的,而接下来的另外两个衡量指标也不容忽视。
种类是指许多不同的数据和文件类型,对于管理和更深入的分析数据是至关重要的。但不适合传统的关系数据库。这方面的例子包括各种声音和电影文件、图像、文档、地理定位数据、网络日志和文本字符串。
速度是有关数据的变化率,以及其必须如何快速的被使用,以创造真正的价值。传统技术,尤其不适合用于高速数据储存和使用。因此,采用新的方法是必要的。如果有问题的数据创建和聚合速度非常快,就必须使用迅速的方式来揭示其相关的模式和问题。你发现问题的速度越快,就越有利于您从你大数据分析中获得更多的机会。
2、大数据指的是Hadoop
Hadoop是Apache为大数据工作的开源软件框架。其是来自于Google的技术加上雅虎的理念和其他,并付诸实践得出的。但是,大数据是如此的多样,和复杂,其绝对不存在一套放之四海而皆准的万能的解决办法。虽然Hadoop已经毫无疑问的获得了相当大的知名度,但其也仅仅只是适合大数据存储和管理的三种技术的其中之一。其他两个种技术上NoSQL和大规模并行处理(MPP)数据存储。MPP数据存储的例子包括EMC的Greenplum、IBM公司的Netezza和惠普的Vertica。[page]
此外,Hadoop是一个软件框架,这意味着它包括若干专门设计的组件,是专门设计来解决大规模分布式数据存储,分析和检索任务的。不是所有的Hadoop组件都是必要的,对于一个大的数据解决方案,其中一些组件可取代其他技术,更好地配合用户的需求。一个例子是MapR的Hadoop,其中包括NFS作为HDFS的替代,并提供了一个完整的随机存取,读/写文件系统。
3、大数据意味着非结构化数据
“非结构化”这一术语是不准确的,其没有考虑到许多通常与大数据类型相关的不同的和微妙的结构。此外,大数据很可能在同一数据集有不同的数据类型,不包含相同的结构。
因此,大数据更好可能是被称为“多层结构”,因为它可以包含文本字符串、所有类型的文件、音频和视频文件、元数据、网页、电子邮件、社交媒体供稿、表格数据,等等。这些不同的数据类型一致的特点是不知道其数据架构或不知道在这些数据被捕获和存储时如何定义。相反,一个数据模型经常在数据被使用时进行应用。
4、大数据只是社会媒体内容和情感分析
简而言之,如果您的企业需要广泛地分析网络流量、IT系统日志、客户的情绪,或任何其他类型的每一天所创建的数字纪录册上的阴影,大数据提供了一个办法做到这一点。即使大数据的早期开拓者,已成为最大的基于网络的社会化媒体公司:谷歌、雅虎、Facebook,他们的服务所产生的数据,需要一种全新的解决方案,而不是分析社会媒体内容和访客情感分析。
现在,由于迅速增长的计算机电源(通常是基于云计算的)、开源软件(例如,Apache的Hadoop发行版),以及如果利用得当现代化对于数据可以产生经济价值的冲击,大数据源源不断地产生新的用途和应用。大数据带来了很多让人欣喜的成果,其中包含了一些令人深思的用途,这在今年年初曾经在“福布斯”上的相关文章中报道过。
5、NoSQL意味着非结构化查询语言
NoSQL意味着“不仅仅”是SQL,因为这些类型的数据存储提供特定领域的访问和查询技术,除了SQL或类似SQL接口。NoSQL这一类的技术,包括关键值存储、面向文档的数据库、图形数据库、大表结构和缓存数据存储。具体的本地存储的数据访问方法提供了一个丰富的、低延时的方法,通常是通过专有接口。SQL访问具有熟悉许多工具并与之兼容的优势。虽然这通常是在一些底层系统解释查询本地的“语言”的延迟费用。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21