盘点:数据挖掘历史中的那些重要里程碑
数据挖掘现在随处可见,而它的故事在《点球成金》出版和“棱镜门”事件发生之前就已经开始了。下文叙述的就是数据挖掘的主要里程碑,历史上的第一次,它是怎样发展以及怎样与数据科学和大数据融合。
数据挖掘是在大数据集(即:大数据)上探索和揭示模式规律的计算过程。它是计算机科学的分支,融合了统计学、数据科学、数据库理论和机器学习等众多技术。
1763年Thomas Bayes 的论文在他死后发表,他所提出的 Bayes 理论将当前概率与先验概率联系起来。因为 Bayes 理论能够帮助理解基于概率估计的复杂现况,所以它成为了数据挖掘和概率论的基础。1805年Adrien-Marie Legendre 和 Carl Friedrich Gauss 使用回归确定了天体(彗星和行星)绕行太阳的轨道。回归分析的目标是估计变量之间的关系,在这个例子中采用的方法是最小二乘法。自此,回归成为数据挖掘的重要工具之一。1936年计算机时代即将到来,它让海量数据的收集和处理成为可能。在1936年发表的论文《论可计算数(On Computable Numbers)》中,Alan Turing 介绍了通用机(通用图灵机)的构想,通用机具有像今天的计算机一般的计算能力。现代计算机就是在图灵这一开创性概念上建立起来的。1943年Warren McCullon 和 Walter Pitts 首先构建出神经网络的概念模型。在名为 《A logical calculus of the ideas immanent in nervous activity》 的论文中,他们阐述了网络中神经元的概念。每一个神经元可以做三件事情:接受输入,处理输入和生成输出。1965年Lawrence J. Fogel 成立了一个新的公司,名为 Decision Science, Inc,目的是对进化规划进行应用。这是第一家专门将进化计算应用于解决现实世界问题的公司。1970年随着数据库管理系统趋于成熟,存储和查询百万兆字节甚至千万亿字节成为可能。而且,数据仓库允许用户从面向事物处理的思维方式向更注重数据分析的方式进行转变。然而,从这些多维模型的数据仓库中提取复杂深度信息的能力是非常有限的。1975年John Henry Holland 所著的《自然与人工系统中的适应》问世,成为遗传算法领域具有开创意义的著作。这本书讲解了遗传算法领域中的基本知识,阐述理论基础,探索其应用。1980年HNC 对“数据挖掘”这个短语注册了商标。注册这个商标的目的是为了保护名为“数据挖掘工作站”的产品的知识产权。该工作站是一种构建神经网络模型的通用工具,不过现在早已销声匿迹。也正是在这个时期,出现了一些成熟的算法,能够“学习”数据间关系,相关领域的专家能够从中推测出各种数据关系的实际意义。1989年术语“数据库中的知识发现”(KDD)被Gregory Piatetsky-Shapiro 提出。同样这个时期,他合作建立起第一个同样名为KDD的研讨会。1990年“数据挖掘”这个术语出现在数据库社区。零售公司和金融团体使用数据挖掘分析数据和观察趋势以扩大客源,预测利率的波动,股票价格以及顾客需求。1992年Berhard E. Boser, Isabelle M. Guyon 和 Vladimir N. Vanik对原始的支持向量机提出了一种改进办法,新的支持向量机充分考虑到非线性分类器的构建。支持向量机是一种监督学习方法,用分类和回归分析的方法进行数据分析和模式识别式。1993年Gregory Piatetsky-Shapiro 创立“ Knowledge Discovery Nuggets (KDnuggets) ”通讯。本意是联系参加KDD研讨会的研究者,然而KDnuggets.com的读者群现在似乎广泛得多。2001年尽管“数据科学”这个术语在六十年代就已存在,但直至 2001 年,William S. Cleveland 才以一个独立的概念介绍它。根据《Building Data Science Teams》所著,DJ Patil 和 Jeff Hammerbacher 随后使用这个术语介绍他们在 LinkedIn 和 Facebook 中承担的角色 。2003年Micheal Lewis 写的 《点球成金》 出版,同时它也改变了许多主流联赛决策层的工作方式。奥克兰运动家队(美国职业棒球大联盟球队)使用一种统计的,数据驱动的方式针对球员的素质进行筛选,这些球员被低估或者身价更低。以这种方式,他们成功组建了一支打进2002和2003年季后赛的队伍,而他们的薪金总额只有对手的1/3。2015年在 2015 年二月,DJ Patil成为白宫第一位首位数据科学家。今天,数据挖掘已经遍布商业、科学、工程和医药,这还只是一小部分。信用卡交易,股票市场流动,国家安全,基因组测序以及临床试验方面的挖掘,都只是指数据挖掘应用的冰山一角。随着数据收集成本变得越来越低,数据收集设备数目激增,像大数据这样的专有名词现在已经是随处可见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31