剖析大数据市场:继续发展并逐渐迁移云端
大数据市场呈一片欣欣向荣的景象,近年来,随着技术的不断发展创新,大数据顺着时代发展的潮流,发展迅猛。“大数据”一词最早出现在1990年的一本科技词典中,当时这个词是用于形容庞大且增长猛烈的企业数据,利用当时的技术,人们很难存储并分析这些数据。
2001年,分析师DougLaney提出了大数据的定义,它包含三个“V”的维度:数量(volume)、速度(velocity)和种类(variety)。在随后的几年里,Laney的定义成为了行业通用的标准,有些人还加入了第四个V来定义它——可变性(variability)。
2014年,IDC和EMC发布了最新版本的《数字世界研究报告》,其中指出全球数字化系统中存储的数据量正在以每年40%的速度增长着。报告还预测,到2020年,整个数字化世界中将存储44泽字节的信息。这些数据就如同宇宙中的繁星一样多,要把这些信息装进2014年代的数据表里,表格的长度是日月距离的6.6倍。
现如今,大数据依然在快速地发展,不过人们已经渐渐不去把数据存储量的增长当成焦点。相反地,越来越多的组织开始把目光放在数据分析、数据科学以及机器学习上。他们直接把管理大数据当做是业务的一部分,如果想要在竞争中获得胜利,他们就需要找到将存储的大数据转化为高价值洞察的方式。
大数据市场概况
根据IDC报告,全球大数据及商业分析的收入可能将从2017年的1508亿美元增长到2020年的2100亿美元,复合年增长率高达11.9%。这也意味着,在大数据发展的这些年,企业在大数据技术上的花费越来越多。
IDC集团副总裁DanVesset说:“在经历了S型曲线式的多年发展以后,大数据和商业分析解决方案已经完全成为了主流。”
大部分组织和企业认为大数据项目对他们的营收有积极的影响。在《NewVantage Partners 大数据管理调查》中,80.7%的受访者反馈针对大数据的投资是成功的,48.4%的人认为他们通过大数据项目实现了可以被计量的好处。
这样的结果可能会鼓励企业继续向大数据投资,但他们所采纳的大数据解决方案的类型正在发生转变。根据Forrester的一项调查,“大数据正在向云端迁移。事实上,全球范围内,通过云端订阅购买大数据解决方案的增长速度是本地化订阅的7.5倍。”Forrester还补充道,“此外,根据我们2016-2017年针对数据分析专家的调查,公有云是大数据领域首选的技术。”
对于依赖机器学习技术的大数据分析而言,云端解决方案特别受欢迎。机器学习需要高级且昂贵的计算机硬件,但在云端进行机器学习的方式能够令企业以极少的成本实现这一过程,这样的成本只是自行安装数据中心的一小部分。虽然企业面临着和云端分析相关的种种困难,但专家认为云端分析发展的趋势未来几年将会加快。
大数据技术
随着大数据市场的逐渐成熟,供应商们也开发出了各式各样不同的大数据技术来满足企业的需求。这是一个非常广阔的市场,但大部分大数据解决方案都可以根据以下标准进行分类:
商业智能(BI):商业智能解决方案能够基于存储在数据仓库中的业务数据提供分析及报告能力。根据Gartner报告,BI和分析的市场预计将从2017年的183亿美元增长到2020年的228亿美元。但是,它们的增长速率比以前更慢。
数据湖:数据湖能够消化各种来源渠道的数据,并以数据源原始的格式进行存储。它与数据仓库之间的差别在于,数据仓库中的数据都是经过清洗并且调整到可分析格式的数据。对于那些希望同时进行结构化和非结构化分析的组织而言,数据湖非常受欢迎。
数据整合:大数据分析技术面临的一个巨大挑战就是要从各个分散的数据源收集各种相关的数据,并把他们统一到一个能够轻松实现分析的格式。这为我们带来了很多的数据整合解决方案,有时大家把它叫做ETL(数据提取、转换、加载)解决方案。根据Markets and Markets的研究报告,数据整合业务的收入到2022年可能会增长到124亿美元。
数据管理:这类型的解决方案中包含了能够帮助企业整合、清洗、存储、维护并保证数字数据质量的各种工具。Markets and Markets预计这类型大数据工具到2022年将产生1052亿美元的收入。
数据挖掘:数据挖掘的范围很广,其中包括了各式各样的找到大数据模式与规律的技术。虽然很多大数据解决方案依然在异同数据挖掘的能力,但这个概念已经不太受到供应商的欢迎了,因为他们开始用“预测性分析”和“机器学习”来形容自己的解决方案。
开源技术:很多市面上最常用的大数据技术都是通过开源的授权来实现的。特别像Hadoop和Spark这样以Apache为基础进行管理的技术,已经非常受欢迎。很多供应商都能够提供这些开源大数据技术的商业化支持版本。
NoSQL数据库:不同于关系型数据库管理系统(RDBMSes),NoSQL数据库不通过传统的行列表格形式存储信息,而是通过各种模型,例如行列、文件、数据追踪图等改格式进行存储。很多企业都在使用NoSQL数据库用于非结构化数据的存储和分析
预测性分析:这是目前最受欢迎的大数据分析形势。预测性分析关注过往的历史趋势,目的是对未来会发生什么做出预测。很多现代的预测性分析解决方案都加入了机器学习的能力,目的是随着时间的增加提高预测的准确性。Zion的一项市场调研报告指出,预测性分析的指出将从2016年的34.9亿美元增长到2022年的109.5亿美元。
诊断分析:诊断分析在预测性分析上更进了一步。除了告诉企业未来可能会发生什么,这样的解决方案还能够基于事件发生的原因提出建议,达成期望的结果。专家认为,目前市面上只有少数的大数据分析解决方案拥有真正的预测性分析能力,但很多供应商都在大力研究这个领域。
内存数据库:内存技术大大提升了大数据分析的速度。在任何的计算机系统中,内存数据的存取(有时也叫RAM)相比存储在硬件或实体硬盘中的数据存取都是快的多的。内存数据库能够帮助用户在内存中存储大量的数据,大幅提升速度。
数据科学平台:很多供应商都开始将他们的大数据分析解决方案标榜为“数据科学平台”。这个领域的产品通常而言都把很多不同的功能整合到了同一个平台上。这个领域里几乎所有的产品都有一些分析或者机器学习的功能,很多也有数据整合和数据管理的能力。
人工智能和机器学习:很多新一代的大数据分析工具都加入了机器学习能力,这是人工智能(AI)领域的一个子集。机器学习利用算法帮助系统随着时间的增长优化任务处理的能力,并且不需要直接的编程行动。这是大数据领域中发展最快的部分。
在2018年的大数据市场中,大数据还将继续发展,而重心也逐渐迁移向云端。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16