数据分析的七个关键步骤
独自工作,将深奥的公式应用于大量的数据搜索从而得到有用的见解。但这还仅仅是一个过程中的一个步骤。数据分析本身不是目标,目标是使业务能够做出更好的决策。数据科学家必须构建产品,让组织中的每个人更好地使用数据,,使每个部门和各级都能用数据驱动决策。
数据价值链是对自动收集产品,清洗和分析数据的捕获,通过仪表板或报告来提供信息和预测。自动化进行分析,而且数据科学家可以在改进工作与业务模型,提高预测精度。
虽然每个公司创建数据产品针对自己的需求和目标,但是总体的步骤和目标是一致的:
1.决定目标:数据价值链的第一步必须先有数据,然后业务部门已经决定数据科学团队的目标。这些目标通常需要进行大量的数据收集和分析。因为我们正在研究数据驱动决策,我们需要一个可衡量的方式知道业务正向着目标前进。关键指标或性能指标必须及早发现。
2.确定业务标杆:业务应该做出改变来改善关键指标从而达到它们的目标。如果没有什么可以改变,就不可能有进步,,论多少数据被收集和分析。确定目标、指标在项目早期为项目提供了方向,避免无意义的数据分析。例如,目标是提高客户留存率,其中一个指标可以为客户更新他们的订阅率,业务可以通过更新页面的设计,时间和内容来设置提醒邮件和做特别促销活动。
3.数据收集:撒一张数据的大网,更多数据,特别是数据从不同渠道找到更好的相关性,建立更好的模型,找到更多可行的见解。大数据经济意味着个人记录往往是无用的,在每个记录可供分析才可以提供真正的价值。公司密切检测他们的网站来跟踪用户点击和鼠标移动,通过射频识别(RFID)技术来跟踪他们行动的方式等等。
4.数据清洗:数据分析的第一步是提高数据质量。数据科学家处理正确的拼写错误,处理缺失数据和清除无意义的信息。在数据价值链中这是最关键的步骤,即使最好的数据值分析如果有垃圾数据这将会产生错误结果和误导。不止一个公司惊奇地发现,很大一部分客户住在斯克内克塔迪(美国城市),纽约,和小镇的人口不到70000人等等。然而,斯克内克塔迪邮政编码12345,所以不成比例地出现在几乎每一个客户档案数据库由于消费者往往不愿真实填入他们的在线表单。分析这些数据将导致错误的结论,除非数据分析师采取措施验证从而得到的是干净的数据。。这通常意味着自动化的过程,但这并不意味着人类无法参与其中。
5.数据建模:数据科学家构建模型,关联数据与业务成果和提出建议并确定关于业务价值的变化这是其中的第一步。这就是数据科学家成为关键业务的独特专长,通过数据,建立模型,预测业务成果。数据科学家必须有一个强大的统计和机器学习的背景来构建科学精确的模型和避免毫无意义的相关性陷阱和模型依赖于现有的数据,他们的未来预测是无用的。但统计背景是不够的,数据科学家需要更好了解业务,他们将能够识别数学模型的结果是否有意义的有价值的。
6.数据科学团队:数据科学家是出了名的难以雇用,这是一个好主意来构建一个数据科学团队通过那些有一个高级学位统计关注数据建模和预测,而团队的其他人,合格的基础设施工程师,软件开发人员和ETL 专家,建立必要的数据收集基础设施、数据管道和数据产品,使数据通过报告和仪表盘来显示结果和业务模型。这些团队通常使用大规模数据分析平台Hadoop自动化数据收集和分析和运行整个过程来作为一个产品。
7.优化和重复:数据价值链是一个可重复的过程,通过连续改进价值链的业务和数据本身。基于模型的结果,企业将通过数据科学团队测量的结果来驱动业务。在结果的基础上,企业可以决定进一步行动通过数据科学团队提高其数据收集、数据清理和数据模型。如果企业对于重复这个过程越快,就越早能走向正确的方向,从而得到数据价值。理想情况下,多次迭代后,模型将生成准确的预测,业务将达到预定义的目标,数据价值链的结果将用于监测和报告,人人都搬来解决下一个商业挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06