失业率(UnemploymentRate)是指失业人口占劳动人口的比率(一定时期全部就业人口中有工作意愿而仍未有工作的劳动力数字),旨在衡量闲置中的劳动产能,是反映一个国家或地区失业状况的主要指标。通过对历年各国和地区的失业率数据 行分析,我们可以对全世界在这几十年的经济波动情况有个大致的了解,同时我们对世界几个大国的失业情况进行了模型拟合,最后我们还探究了中国从改革开放到2010年这30年的失业率的波动与通胀率的关系。
PART ONE——聚类分析
代码如下:
libname ep ‘e:\saslx’;
proc import out=ep.saswork
datafile=”e:\saslx\saswork.xls”
dbms=excel replace;
sheet=”sheet1$”;
getnames=yes;
run;
proc print;
id country;
run;
data s1;
input coun$1-10 year91 year92 year93 year94 year95 year96 year97 year98 year99 year00 year01 year02 year03 year04 year05 year06 year07 year08 year09 year10 ;
datalines;
中国 2.3 2.3 2.6 2.8 2.9 3 3.1 3.1 3.1 3.1 3.6 4 4.3 4.2 4.2 4.1 4.0 4.2 4.3 4.1
中国香港 1.8 2 2 1.9 3.2 2.8 2.2 4.7 6.2 4.9 5.1 7.3 7.9 6.8 5.6 4.8 4.0 3.6 5.2 4.3
中国澳门 3 2.2 2.1 2.5 3.6 4.3 3.2 4.6 6.3 6.8 6.4 6.3 6 4.9 4.1 3.8 3.1 3.0 3.6 2.8
澳大利亚 9.6 10.5 10.7 9.5 8.4 8.3 8.4 7.8 7 6.4 6.8 6.4 5.9 5.5 5 4.8 4.4 4.2 5.6 5.2
奥地利 3.5 3.7 4.3 3.6 3.7 4.1 4.2 4.2 3.8 3.6 3.6 4 4.3 4.9 5.2 4.7 4.4 3.8 4.8 4.4
保加利亚 11.1 15.3 21.4 20 15.7 13.5 13.7 12.2 14.1 16.3 19.4 17.6 13.7 12 10.1 9 6.9 5.6 6.8 10.2
加拿大 10.4 11.3 11.2 10.4 9.5 9.6 9.1 8.3 7.6 6.8 7.2 7.7 7.6 7.2 6.8 6.3 6.0 6.1 8.3 8.0
捷克 4.1 2.6 4.3 4.3 4 3.9 4.8 6.5 8.7 8.8 8.1 7.3 7.8 8.3 7.9 7.1 5.3 4.4 6.7 7.3
丹麦 10.6 11.3 12.4 8 7 6.9 6.1 5.5 5.5 4.6 4.8 4.7 5.5 5.6 5 4.1 4.0 3.4 6.0 7.4
芬兰 6.6 11.6 16.2 16.4 15.2 14.4 12.5 11.3 10.1 9.7 9.1 9.1 9 8.8 8.3 7.7 6.8 6.4 8.2 8.4
法国 9 10 11.1 12.3 11.6 12.1 12.3 11.8 10 8.5 7.8 7.9 8.5 8.9 8.9 8.8 8.0 7.4 9.1 9.3
德国 6.6 7.9 9.5 10.3 10.1 8.8 9.8 9.7 8.8 7.9 7.9 8.7 10 11 11.1 10.3 8.6 7.5 7.7 7.1
希腊 7.7 8.7 9.7 9.6 10 10.3 10.3 10.8 11.9 11.2 10.4 9.9 9.3 10.2 9.6 8.8 8.1 7.2 9.5 12.5
匈牙利 8.5 9.8 11.9 10.7 10.2 9.9 8.7 7.8 7 6.4 5.7 5.8 5.7 6.1 7.2 7.5 7.4 7.8 10.0 11.2
冰岛 2.5 4.3 5.3 5.3 4.9 3.7 3.9 2.7 2 2.3 2.3 3.3 3.4 3.1 2.6 2.9 2.3 3.0 7.2 7.6
爱尔兰 14.7 15.1 15.7 14.7 12.2 11.9 10.3 7.8 5.7 4.3 3.7 4.2 4.4 4.4 4.3 4 4.0 5.2 11.7 13.5
以色列 10.6 11.2 10 7.8 6.9 6.7 7.7 8.5 8.9 8.8 9.4 10.3 10.7 10.4 9 8.4 7.3 6.1 7.6 6.6
意大利 10.9 11.4 9.8 10.7 11.3 11.4 11.5 11.7 11.4 10.5 9.5 9 8.7 8 7.7 6.8 6.1 6.7 7.8 8.4
日本 2.1 2.2 2.5 2.9 3.2 3.4 3.4 4.1 4.7 4.7 5 5.4 5.3 4.7 4.4 4.1 3.9 4.0 5.0 5.1
韩国 2.3 2.4 2.8 2.4 2 2 2.6 6.8 6.3 4.4 4 3.3 3.6 3.7 3.7 3.5 3.2 3.2 3.6 3.7
荷兰 7 5.5 6.2 6.8 7.1 6.6 5.5 4.3 3.6 3.1 2.5 3.1 4 5 5.1 4.2 3.5 3.0 3.4 4.5
新西兰 10.3 10.3 9.5 8.1 6.3 6.1 6.6 7.5 7 6.1 5.4 5.3 4.8 4 3.8 3.8 3.7 4.2 6.1 6.5
挪威 5.5 5.9 6 5.4 4.9 4.8 4 3.2 3.2 3.4 3.6 3.9 4.5 4.5 4.6 3.4 2.5 2.6 3.1 3.5
菲律宾 9 8.6 8.9 8.4 8.4 7.4 7.9 9.8 9.8 11.2 11.1 11.4 11.4 11.8 7.8 8 7.3 7.4 7.5 7.3
波兰 11.8 13.6 14 14.4 13.3 12.3 11.2 10.5 13.9 16.1 18.2 19.9 19.6 19 17.7 13.8 9.6 7.1 8.2 9.6
葡萄牙 4.1 4.1 5.4 6.7 7.1 7.2 6.7 4.9 4.4 3.9 4 5 6.3 6.7 7.6 7.7 8.0 7.6 9.5 10.8
罗马尼亚 3 8.2 10.4 8.2 8 6.7 6 6.3 6.8 7.1 6.6 8.4 7 8 7.2 7.3 6.4 5.8 6.9 7.3
俄罗斯联邦 0.1 5.2 5.9 8.1 9.5 9.7 11.8 13.3 12.6 9.8 8.9 7.9 8 7.8 7.2 7.2 6.1 6.3 8.4 7.5
西班牙 16.4 18.4 22.6 24.1 22.9 22.1 20.6 18.6 15.6 13.9 10.6 11.5 11.5 11 9.2 8.5 8.3 11.3 18.0 20.1
土耳其 8.1 8.3 8.8 8.4 7.5 6.5 6.7 6.8 7.7 6.5 8.4 10.3 10.5 10.3 10.3 9.9 10.3 11.0 14.0 11.9
瑞典 3 5.2 8.2 8 7.7 8 8 6.5 5.6 4.7 4 4 4.9 5.5 6 5.4 6.1 6.2 8.3 8.4
泰国 2.7 1.4 1.5 1.3 1.1 1.1 0.9 3.4 3 2.4 2.6 1.8 1.5 1.5 1.4 1.2 1.2 1.2 1.5 1.0
英国 8.4 9.7 10.3 9.6 8.6 8.2 7.1 6.1 6 5.4 4.9 5 4.8 4.7 4.6 5.4 5.3 5.3 7.5 7.8
美国 6.8 7.5 6.9 6.1 5.6 5.4 4.9 4.5 4.2 4 4.8 5.8 6 5.5 5.1 4.6 4.6 5.8 9.3 9.6
委内瑞拉 9.5 7.7 6.7 8.7 10.3 11.8 11.4 11.2 14.5 13.2 12.8 16.2 16.8 13.9 11.4 9.3 7.5 6.9 7.9 8.5
run;
proc cluster data =s1 method=average pseudo;
id coun;
proc tree;
run;
PST2伪t2值,在G=3和G=1处有峰值,由于最佳分类为它上面一种,故表明它支持4分类和2分类。PSF伪F值,在G=2和G=4处较大,也支持前面的结论。
倘若分为4类,则有
第一类:中国、日本、奥地利、韩国、中国香港、中国澳门、冰岛、荷兰、挪威、泰国、捷克
第二类:澳大利亚、英国、丹麦、新西兰、加拿大、匈牙利、葡萄牙、瑞典、美国、罗马尼亚、芬兰、法国、意大利、希腊、德国、以色列、菲律宾、土耳其、俄罗斯联邦、爱尔兰
第三类:保加利亚、波兰、委内瑞拉
第四类:西班牙
失业率数字被视为一个反映整体经济状况的指标,而它又是每个月最先发表的经济数据,所以失业率指标被称为所有经济指标的“皇冠上的明珠”,它是市场上最为敏感的月度经济指标。
从第一类分析出有许多亚洲国家都分为一类,可见地域差异对于失业率还是有影响,也可以推测同一地域的经济状况相似,因此失业率也比较相近;第一类也参杂了少量欧洲国家。
第二类中全是发达国家,各自的所在大洲也不一样,但是,从失业率也可以反映他们的国家经济情况变化在20年来应该是相近的。
第三类是第二类中未提及的欧洲发达国家与南美洲的一个国家合为一类,这一点上是有些奇怪的。
第四类西班牙独自为一类,观察数据发现,它的失业率一直以来居高不下,推测它可能一直都保持着这种水平,即经济也似乎是不会变动太大的。
proc fastclus data =s1 maxclusters=4 out=fcl;
id coun;
proc sort data=fcl out = sortfcl;
by cluster;
proc print data=sortfcl;
run;
用快速聚类法也得到了同样的分类结果,推测针对这些国家,分为4类确实比较适合。
PART TWO——模型拟合
我们想研究各国的失业率符合什么样的模型,从而根据这个模型可以对失业率进行分析和预测,最后,如果几乎所有的国家的失业率都属于同一种模型,那我们就可以推断这是失业率随着年份的一般发展规律。由于国家众多,所以选取我们感兴趣的一些国家来做。
选取中国作为研究对象。
先通过画图看应该用哪种模型来拟合比较好。为了画图方便,把1991年看作是第一年,1992年看作是第二年,依次类推,2010年看作是第二十年。
从图中可以发现图形大致为S型。采用 logistic模型 。
由图中的结果可以看出,模型拟合的很好,可以大致认为中国的失业率符合logistic模型。可能原因是随着90年年以后教育力度的加强,高素质人才愈来愈多,导致失业率不断上升,但是可能某一段时间的退休人数增加,加上国家的行业变得多样化,企业数量增多,对人才的需求大,阻止了失业率的增长速度,但是还不足以抵消。
下面研究澳大利亚的失业率。
很显然,logistic模型不再满足澳大利亚的失业率变化,试用指数模型拟合一
发现结果还比较让人满意。由于对澳大利亚的国情不是很了解,不知道为什么他们的失业率会逐年下降,不过可以肯定的是,他们的政府起了很大作用。
再分析一下日本
Logistic模型和指数模型多不再满足,用三角函数来拟合
模型的拟合结果还让人满意。据我所知,日本在六七十年代经历了经济的极端繁荣之后就开始走下坡,特别是到了九十年代末二十一世纪初的时候,各行各业失业的情况十分严重,可能这后经过一系列的经济调整,情况有所转变,但是到了08年,受到全球经济危机的冲击,失业率又上升了。
从以上三个实例可以看出,失业率没有符合某一具体模型,而是根据不同国家的不同情况而有所变化。
PART THREE——中国失业率曲线分析
data china;
input y1980-y2010;
datalines;
4.9 3.8 3.2 2.3 1.9 1.8 2 2 2 2.6 2.5 2.3 2.3 2.6 2.8 2.9 3 3.1 3.1 3.1 3.1 3.6 4 4.3 4.2 4.2 4.1 4.0 4.2 4.3 4.1;
proc transpose out=china(rename=(_name_=year col1=rate));
run;
proc gplot;
plot rate*year;
run;
上图所示为中国从改革开放至今(1980年-2010年)各年的失业率。
单从上图曲线来看,可看出1980年的失业率较高,为4.9%,从1980年到1984年,失业率逐年降低,下降的速率也很快;1984年到1988年失业率呈现平稳波动;1988年到1989年间失业率陡增;1990年到2000年失业率呈现平缓上升的趋势,2000年到2003年,失业率上升的速度加快;2003年到2010年失业率保持平稳波动。
一般情况下,失业率下降,代表整体经济健康发展,利于货币升值;失业率上升,便代表经济发展放缓衰退,不利于货币升值。若将失业率配以同期的通胀指标来分析,则可知当时经济发展是否过热,会否构成加息的压力,或是否需要通过减息以刺激经济的发展。
通货膨胀(Inflation)指在纸币流通条件下,因货币供给大于货币实际需求,也即现实购买力大于产出供给,导致货币贬值,而引起的一段时间内物价持续而普遍地上涨现象。
libname mywork ‘e:\sas\sas作业’;
proc import out=rate
datafile=’e:\SAS\通胀率.xls’
dbms=excel replace;
sheet=’sheet1$’;
getnames=yes;
run;
proc gplot;
plot _col1*_col0;
run;
上图所示为改革开放近30年来的通胀率曲线。
下面我们对通胀率和失业率两个图进行对比分析:
1984年以前失业率的降低与通胀率似乎没有多大关系,我认为这主要是改革开放的新政策极大促进了就业。特殊政策的影响太大了。从1984年以后来分析失业率与通胀率的关系比较合理。
从1984年到2000年,通胀率波动很大,失业率也处于一种波动状态,通胀率开始上升的一年内,失业率有略微下降。通货膨胀对刺激就业的作用是短期的,长期来说这种关系并不成立。而从两个图的对比中,我们也会发现,持续的通货膨胀反而导致失业率上升。在经济学中,有这样一个基本原理:社会面临通货膨胀与失业的短期权衡取舍。大多数经济学家认为在货币注入的短期效应会降低失业率。我们结合2000年到2009年这10年的数据来看,可看出政府在权衡取舍中,并没有选择通过发行过多货币来刺激就业,而是选择了维持较低的通胀率,但这同时这就意味着失业情况无法从货币刺激这个方面得到改善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08