中小卖家利用大数据不在概念在操作
电商行业现在已是人人开口必讲大数据,运营者自以为有大数据支持便可预测用户行为、找到精准用户以期实现销售的几何倍数增长。但对于绝大多数的中小卖家而言,大数据更多时候如同镜花水月一般,看着诱人实则无法去利用。诚然,一方面卖家只能获得基础订单数据信息,其数据维度之小是难以称得上是大数据的;而另一方面中小卖家的经营模式也不太可能引入专业的数据分析师。
如何将数据进行共享且进行简单化操作是当前中小卖家最迫切需要的。
此前以淘宝为代表的电商平台在平台大数据方面所做工作很多,如码上淘产品在搜集用户信息以及平台进行精准化营销方面做了大量工作。铁哥认为,此是平台方在与用户之间的大数据关系的建立,系统通过用户数据匹配最精准需求,提高营销精准度。
而对于无数的卖家而言,自己依然无法实际操作大数据,换句话说卖家方面对于大数据更多还是跟从平台脚步,自己鲜有动作通过大数据拉新,提高成交量。如何让卖家有选择性的通过平台数据共享机制获得营销效果,是电商平台需要迫切解决的。
不久前阿里妈妈“阿里魔镜”项目上线限时内测,铁哥作为卖家一员测试以为对于卖家确实解决了长期以来无法利用大数据的难题。
其一,大数据不再枯燥
大数据是个极其枯燥的学科,其基本包括:数据搜集、筛选、建模、解读、运用等环节,非有数学专长根本无法开展。这也是即便将数据共享给卖家也无法完全运用的根本原因。
而在该产品中,卖家不需要对数据中间的处理过程负责,只需要一键便可完成大数据运用的多个环节,直接进入运用阶段。
这最大程度上减轻了卖家对数据运用的恐惧程度,傻瓜式的操作方式对大数据的运用普及贡献极大。
其二,精准解决商家拉新需求
电商卖家日常最重要无非三件事:1.运营2.留客3.拉新。前两者可通过店铺现有工具和营销方式基本可实现,而对于拉新往往过多依赖于现有营销工具,尚未把大数据完全利用起来。其中以往营销产品过多集中于对某个产品或同类产品的相关用户进行潜力挖掘,难以称得上是真正的大数据运用。
而“阿里魔镜”则不同,本质上其核心方法是将以广告主的已购用户为种子用户,为广告主找到潜在客户,潜在客户经过广告触达后,购买了广告主的商品,成为了已购用户。然后对已购用户再进行分层管理,持续拉新,持续维护老客户。也就意味着以往是基于店铺以及商品属性进行的精准营销,将直接升级为基于产品和目录认知的精准营销。可有效解决商家拉新的问题。
其三,基于大数据的算法营销注定是风口
此前广告业的广告投放模式相对粗放,有完全基于展示的,亦有根据简单cookie所认为的精准营销,当然也有简单的基于购买以及浏览习惯,常见为用户购买某产品后部分广告平台仍然推荐该产品。数据运用的粗暴以及缺乏预测性,是传统网络广告行业发展最大瓶颈。
而基于大数据的算法营销则是完全依据多维度多数据量的大数据,以科学数学模型为手段,精准找到最具有购买潜力的用户,进行精准化营销。在寻找精准用户时并非完全依据大数据,而是依据单一或者较少维度数据进行,其精准营销效果往往大打折扣。而此次“阿里魔镜”产品是阿里妈妈方面在基于大数据的算法营销方面的一次领先尝试,对于中小卖家而言通过该产品不仅可提高店铺转化量且由于属于更为精准营销,也可降低店铺运营成本,尤其在拉新方面的投入。整个网络广告界草创阶段的粗暴做法也行将结束,类似“阿里魔镜”这般算法营销将注定成为主流。
但铁哥也提醒大家,切不可被同类概念忽悠,平台做算法营销要基于三大要素:1.用户量大2.产品线广,用户行为多,数据维度多3.有交易闭环行为。如此,平台获得的数据才是真正大数据,其营销也才称得上的是精准营销,这也是阿里能够率先采用此类手段的重要原因。
最后建议中小卖家少听所谓大师的大数据运用手段,离开平台的大数据都是忽悠。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21