热线电话:13121318867

登录
首页精彩阅读什么是统计检验
什么是统计检验
2015-09-27
收藏

什么是统计检验


建立假设
 
统计检验是将抽样结果和抽样分布相对照而作出判断的工作。取得抽样结果,依据描述性统计的方法就足够了。抽样分布则不然,它无法从资料中得到,非利用概率论不可。而不对待概括的总体和使用的抽样程序做某种必要的假设,这项工作将无法进行。
 
求抽样分布
 
在做了必要的假设之后,我们就能用数学推理过程来求抽样分布了。由于数学上已经取得的成果,实际上统计工作者要做的这项工作往往并不是真的去求抽样分布的数学形式,而是根据具体需要,确定特定问题的统计检验应该采用哪种分布的数学用表。

选择显著性水平和否定域
 
有了与问题相关的抽样分布,我们便可以把所有可能的结果分成两类:一类是不大可能的结果;另一类人们预料这些结果很可能发生。既然如此,如果我们在一次实际抽样中得到的结果恰好属于第一类,我们就有理由对概率分布的前提假设产生怀疑。在统计检验中,这些不大可能的结果称为否定域。如果这类结果真的发生了,我们将否定假设;反之就不否定假设。概率分布的具体形式是由假设决定的,假设肯定不止一个。在统计检验中,通常把被检验的那个假设称为零假设(或称原假设,用符号H0表示),并用它和其他备择假设(用符号H1表示)相对比。值得注意的是,假设只能被检验,从来不能加以证明。统计检验可以帮助我们否定一个假设,却不能帮助我们肯定一个假设。为了使检验更严格、更科学,还需要更多的东西。首先,我们必须确定冒犯第一类和第二类错误的风险的程度;其次,要确定否定域是否要包含抽样分布的两端。第一类错误是,零假设H0实际上是正确的,却被否定了。第二类错误则是,H0实际上是错的,却没有被否定。第二类错误是,零假设H0实际上是错误的,却没有被否定。遗憾的是,不管我们如何选择否定域,都不可能完全避免第一类错误和第二类错误,也不可能同时把犯两类错误的危险压缩到最小。对任何一个给定的检验而言,第一类错误的危险越小,第二类错误的概率就越大;反之亦然。一般来讲,不可能具体估计出第二类错误的概率值。第一类错误则不然,犯第一类错误的概率是否定域内各种结果的概率之和。由于犯第一类错误的危险和犯第二类错误的危险呈相背趋向,所以统计检验时,我们必须事先在冒多大第一类错误的风险和多大第二类错误的风险之间作出权衡。被我们事先选定的可以犯第一类错误的概率,叫做检验的显著性水平(用α表示),它决定了否定域的大小。如果抽样分布是连续的,否定域可以建立在想要建立的任何水平上,否定域的大小可以和显著性水平的要求一致起来(后面的正态检验就如此)。如果抽样分布是非连续的,就要用累计概率的方法找出一组构成否定域的结果。即在已知概率分布表上,从两端可能性最小的概率开始向中心累计,直至概率之和略小于选定的显著性水平为止。在许多场合,我们能预测偏差的方向,或只对一个方向的偏差感兴趣。每当方向能被预测的时候,在同样显著性水平的条件下,单侧检验比双侧检验更合适。因为否定域被集中到抽样分布更合适的一侧,可以得到一个比较大的尾端。这样做,可以在犯第一类错误的危险不变的情况下,减少了犯第二类错误的危险。
计算检验统计量
 
完成了上述工作之后,接下来就是做一次与理想试验尽量相同的实际抽样(比如实际做一次重复抛掷硬币的试验),并从获取的样本资料算出检验统计量。检验统计量是关于样本的一个综合指标,但与第九章参数估计中将要讨论的统计量有所不同,它不用作估测,而只用作检验。
判定
 
假设检验系指拒绝或保留零假设的判断,又称显著性检定。在选择否定域并计算检验统计量之后,完成最后一道手续,即根据试验或样本结果决定假设的取与舍。如果结果落在否定域内,将在已知犯第一类错误概率的条件下,否定零假设。反之,如果结果落在否定域外,则不否定零假设,与此同时,就有了犯第二类错误的危险。http://cda.pinggu.org/

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询