大数据推动策略解读
近日,大数据国家战略有望提上议程的报道频频见诸报端。作为信息时代的一种新事物、新产业,大数据具有基础性、技术性、社会性、渗透性和复杂性等诸多特性,这提醒并告诫人们,大数据与普通人和企业的发展同样联系密切,它需要国家推动,但全社会的支撑更不可少。笔者认为,大数据战略的实施将极为依赖国民科学素养提高、数学教育革新发展和企业应用热情高涨等三大社会性支撑。
大数据时代正在来临,而它是一个格外要求国民科学素养具有整体较高水平与程度的时代。然而,中国的国民科学素养水平恰恰不高,田园牧歌、安于现状是对传统社会最好的图释,科技史上的“李约瑟之谜”是中国人科技素养缺乏的生动写照和先天烙印,而且一定程度影响至今。但如同俗话所说“缺什么补什么”一样,要想在大数据国际竞争中占据有利位置,就得下大力把我们所缺的国民科学素养补上去。一般来说,国民科学素养主要标志有三项:国民受教育程度、理解科学知识与方法的能力、专利发明数量。这些都不能成为面子工程,必须要实现真正的突破。
另一方面,大数据者,“数”为其核心,因而数学教育当仁不让地成为决定大数据发展状况的核心社会因素。反观我们的数学教育现状,重灌输轻思维、重知识轻方法、重理论轻应用,还相当普遍。因而,学生的数学成绩国际领先,但人们却没多少数学思维、方法和应用能力,很难把数学带入到实际工作中。而一些发达国家正好相反,学生的数学成绩并不好看,在数学思维和方法上却得心应手。如2013年诺贝尔化学奖得主就获益于把大数据信息化运用于化学研究之中。这就表明,数学不仅是一门知识或科学,还是一种思维、方法或者习惯,这是大数据所需要的境界,也是我们数学教育在走出填鸭式教学后要追求的境界。
大数据同时也是一种新兴产业,除了科技、教育界的参与,更需要企业成为其造血细胞。如果没有企业运用大数据的热情,前面的准备工作都将白费。只有让企业树立起大数据思维、运用大数据方法,乐于参与数据财富创造,在全社会形成大数据的时代潮流与风尚,才能造就大数据繁荣之基。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22