"那些年,对“大数据”的预言
随着信息与网络技术的飞速发展,我们已经进入一个“大数据”时代。大数据驱动着科学研究进入崭新的阶段,也推进了各行各业的发展。例如,精准的天气和空气质量预测依赖于机器学习和大数据分析技术的发展;各大银行通过大数据分析客户的经济能力;公安部门通过大数据分析各地区和各种人群的犯罪率,进而提前布控进行应对等等。
如今,大数据早已不再局限于科学和经济范畴内的使用,它已经进入人类生活的各个领域,对社会的方方面面都产生着积极、有效的影响。未来,以互联网和物联网大数据以及机器学习等为基础的人工智能技术,可能会引发一场新的工业革命。
而这种以数据分析为核心的计算模式,早在十年前,由微软亚洲研究院主办的“二十一世纪的计算”国际学术研讨会就对其进行了展望和预言。在那个Wintel联盟掌握信息技术世界、诺基亚和摩托罗拉是手机行业对峙竞争双雄的年代,移动互联网仅为雏形,但2005年的
“二十一世纪的计算”大会就以 “无‘数’不在的计算” 为主题,将未来计算的核心锁定在了 “数据”上:
l
“以数据为核心的计算”正在改变着全球数亿计算机用户的体验。个人电脑、互联网上,“数据”无处不在。任何一种应用(服务)都是将“原始数据”处理为有价值的资讯。
l
计算机从巨型机、大型机到小型机,再到个人电脑和形形色色的便携式计算设备,“以应用为核心的计算”已趋向“以数据为核心的计算”的演进。用户关心的将是“如何提取和应用数据中有用的信息”,而不是“数据背后运行着何种应用程序”。“应用”隐于后台、“数据”处在核心,“以数据为核心的计算”已是大势所趋。
l
受制于有限的数据资源和软、硬件平台的性能,“以数据为核心的计算”仅仅停留在梦想的层面。而互联网上海量的、多样化的数据资源,高性能计算机、并行计算的主流化终将令梦想成真。在可以预见的未来,基于“以数据为核心的计算”,无论是生命科学,又或是互联网搜索、高信度计算,都将取得更大的突破和令人难以想象的发展。
身处十年后的今天,回头来看这些大会结论能发现,这些都是对时下火热的大数据计算的精确预见。随着互联网尤其是移动互联网的快速发展,无论是企业机构还是个人的数据,都实现了更加直接、便捷的获取,这使得数据量变得空前庞大且与时俱增,而得益于计算机技术的不断进步,在处理和分析海量数据时的技术门槛却变得越来越低——这一现状,与十年前大会上提到的“多样化的数据资源,高性能计算机”如出一辙。
大数据分析的发展,也推动了尖端计算机技术的演进。目前炙手可热的人工智能技术,就建立在大数据分析的基础之上——此前,人工智能相关研究遭遇的最大瓶颈是,人的逻辑思考模式几乎无法复制给机器,无论是将低阶的声音、影像、气味等信号升华到认知,还是把有共性的现象抽炼成规律,都不是机器所能掌握的技能——机器学习与大数据让人工智能研究者们看到了新的希望,更大规模的数据量和更少的假设、限制可以让机器用自己擅长的方式(数据存储、挖掘、分析)“思考”和成长,从而在实用化路途上走得更快更远;与此同时,借助机器的力量,人们可以在持续激增的大数据海洋里更快地由现象抽取出规律,由规律推导出结论。人工智能和大数据的结合将会越来越紧密,不久的未来,初步拥有了看、听、连接能力的多元化设备会反过来推动人工智能研究的跃进,因为更多的数据会让机器不断发现更准确的规律和更贴近事实的因果。
当然,曾经在“二十一世纪的计算”大会上被准确预言的计算机技术前景还有很多,因此今年以“人工智能无限可能”为主题的“二十一世纪的计算”国际学术研讨会也格外令人期待。大数据和机器学习技术的发展到底还能为人工智能研究带来怎样的变化,让我们期待全球顶尖科学家们所给出的精彩“预言”吧!
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21