Hadoop数据分析处理技术解析
数据的分析是大数据处理的核心。传统数据分析主要是针对结构化数据,其大致过程为:首先利用数据库存储结构化数据,在此基础上构建数据仓库,根据需要再构建相应立方体并进行联机分析处理。这一过程在处理相对较少的结构化数据时非常高效。但对于大数据而言,分析技术面临3 个直观问题:大容量数据、多格式数据及分析速度,这使得标准存储技术无法对大数据进行存储,从而需要引进更加合理的分析平台进行大数据分析。目前,开源的Hadoop 是广泛应用的大数据处理技术,它也是分析处理大数据的核心技术。
Hadoop是一个基于Java的分布式密集数据处理和数据分析的软件框架,用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力高速运算和存储。其基本工作原理为:将规模巨大的数据分解成较小、易访问的批量数据并分发到多台服务器来分析。主要包括文件系统(HDFS)、数据处理(MapReduce)两部分功能模块,最底层是HDFS 用来存储Hadoop 集群中所有存储节点上的文件,HDFS 上一层是MapReduce 引擎,该引擎由Job Trackers 和Task Trackers 组成。其组成架构如图所示:
图 Hadoop组成架构图
鉴于商用的硬件集群上。所谓商用硬件并非低端硬件,其故障率比低端硬件要低很多。Hadoop 不需要运行在价格昂贵并且高度可靠的硬件上,即使对于节点故障的几率较高的庞大集群,HDFS在遇到故障时仍能够继续运行且不让用户察觉到明显的中断,这种设计降低了对机器的维护成本,尤其是在用户管理上百台甚至上千台机器时。
Hadoop 的设计是基于一次写入、多次读取的高效访问模式。每次对数据的分析会涉及到数据所在的整个数据集,这种高数据的吞吐量会造成高的时间延迟,对于低延迟的数据访问,HBase是更好的选择。HDFS 采用master/slave 的构架,即一个HDFS集群由一个NameNode(master)和多个DataNode(slave)组成。NameNode 是一个中心服务器,负责管理HDFS 的命名空间,并维护HDFS 的所有文件及目录。这些信息以命名空间镜像文件和编辑日志文件的形式永久地保存在本地磁盘上。它还记录着每个文件中各个块所在的DataNode 信息,但不永久保存块的位置信息,因为DataNode 会在系统启动时重新建立新的位置信息。同时,NameCode 还负责控制外部Client 的访问。
DataNode 是HDFS 的工作节点,在集群中一般为一个机器节点一个,负责管理节点上附带的存储。它们根据客户端需要或NameNode 调度存储并检索数据块(Block),执行创建、删除和复制数据块的命令,并定期向NameNode 发送存储数据块列表的动态信息,NameNode 获取每个DataNode 的动态信息并据此验证块映射和文件系统元数据。
3.2 MapReduce
MapReduce是用于处理大数据的软件框架。其核心设计思想为:将问题分块处理,把计算推到数据而非把数据推向计算。最简单的MapReduce应用程序至少包含3 个部分:Map函数、Reduce 函数和main函数,其模型相对简单,将用户的原始数据进行分块,然后交给不同的Map任务区执行Map函数处理输出中间结果,Reduce函数读取数据列表并对数据进行排序并输出最终结果。其流程如图所示:
3.3 Hadoop 的优势及问题
Hadoop 是一个能够对大量数据进行分布式处理的软件框架,同时是以一种可靠、高效、可伸缩的方式进行处理。可靠是因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理;高效是因为它以并行的方式工作,通过并行处理加快处理速度;可伸缩是说它能够处理PB 级数据。
但与其他新兴科技一样,Hadoop 同样面临一些需要解决的问题。(1)目前Hadoop 缺乏企业级的数据保护功能,开发人员必须手动设置HDFS 的数据复制参数, 而依赖开发人员来确定复制参数很可能会导致对存储空间的浪费。(2)Hadoop 需要投资建设专用的计算集群,但这通常会产生独立存储、计算资源以及存储或CPU 资源利用问题,且这种存储在与其他程序的共享问题中也存在兼容性问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06