大数据的商业价值到底有多大
当很多中国企业还在纠结于如何将数据演变为成熟的商业模式时,Teradata天睿公司已经开始协助客户实践数据时代(Data Time)变现的能力。
很多人听说过那则经典的“啤酒+尿片”的大数据营销案例,却不知道背后的诞生地却正是Teradata。低调的行事风格来源于Teradata一直践行的商业理念,“始终思考着能协助客户在驾驭数据的能力上提供哪些价值”,这是Teradata天睿公司大中华区首席执行官辛儿伦在接受《英才》记者专访时多次提到的一句话。
出身新闻世家的辛儿伦,年轻时的梦想是当一名新闻主播,但电脑科学是上世纪80-90年代的热门,听从了家人的建议,他选择了理工科。辛儿伦曾在微软公司工作近15年,任职微软大中华区副总裁负责企业事业部。加入Teradata 6年来,带领大中华区业务保持每年双位数的增长速度,并已经成为集团除美国以外的第二大市场。
80倍回报
大数据的商业价值到底有多大?
“可能是80倍的回报。”据辛儿伦介绍,Teradata曾帮助一家国内的领先快递公司利用大数据分析优化人力、物流、调度、计费模式以及清算方法等等,“如果将他们付给Teradata的投资成本算作1块钱,最终这家快递公司运用大数据分析方法,获得了约80块钱的回收利润。”
类似跨行业数据变现的案例还体现在帮助大型银行业进行社区银行的选址、旅游行业的数据分析等等,不过辛儿伦认为,“数据变现在全球还是刚起步的阶段,许多项目还处于雏形阶段,但这些项目一旦验证成功,它会向一对多或多对多的企业关系延伸,项目的范畴上会进行更大的拓广。可以说未来10—30年将远远超越当前我们所能想象到的。”
纵观公司的客户名单,仅中国市场就覆盖了政府公共服务、地铁、交通运输、航空、通信行业、银行、保险、证券、物流、快递行业、制造行业、汽车零售、电子商务等超过10个行业。
而寻找新的增长点也是辛儿伦和他的团队经常思考的问题,“过去这几年,我们在铁路运输、快递、航空发展特别迅猛。在行业的扩展方面,需要扩展更多的领域和产业,类似医疗,也是我们一直以来非常关注的。”
“我们已经不再仅仅是结构化的数据分析、数据仓库的提供商,已经是一个大数据分析解决方案的提供商。”辛儿伦认为Teradata所能服务的行业几乎是无边界的,“纵轴上讲,只要你有数据,不管是什么结构,都可以做信息的挖掘和数据的分析。从横轴上来讲,我们的客户是跨越多行业的延伸。”
随着中国经济体量的不断膨胀,各个行业积累了庞大的数据资产,且增长速度极快。很多中国企业已经意识到这些数据的商业价值和用途,但在驾驭数据,有效整合和分析,进而转换为信息价值以采取正确决策和行动的全过程中面临挑战。
“Teradata的核心竞争力是对信息的驾驭能力,对我们的客户,我们提供良好的方法论、顾问、咨询、产品、数据架构和成熟的建设经验,并融合一些好的开源技术,持续为客户创造价值。”辛儿伦告诉《英才》记者。
并购落地
连续16年蝉联Gartner数据分析领域领导者象限榜首,奠定了Teradata在数据分析这一领域的领头羊地位。
除了与中国客户深厚的合作关系,强大的技术以及商业理念以外,频繁的并购,实现数据分析生态系统的完善也是重要手段之一。
“Aster Data在当时被Gartner认为是全世界大数据供应商里的领导者。”辛儿伦对《英才》记者表示,“Aster Data在被Teradata集团总部收购后,第一时间就在中国落地。在过去三年半的时间,我们成立了专门负责在中国推广和服务的Aster Data技术团队,现在大中华区已经有几十家客户采用Aster技术。我要特别感谢我们的客户。”
最近几年,Teradata保持着强劲的并购势头。2014年公司收购了一家开源Hadoop部署咨询公司——Think Big Analytics。该年还收购了Hadoop元数据管理工具提供商Revelytix以及SQL-on-Hadoop厂商Hadapt。
而2011年花费2.63亿美元收购的非结构化数据处理工具软件厂商Aster Data Systems,被认为是最具代表性的一笔。
这些收购让Teradata在大数据经济的快速转型时代巩固原有阵地的同时,通过自身的持续研发,结合并购带来的新技术,有效地扩展了自己的市场半径。
“Teradata中国市场的业务量和增速5年前已经超过日本,大中华区已经是美国以外最大的业务板块。”辛儿伦说道。
定制经济
“20世纪七八十年代以来,IT产业一直是小I大T,未来将是大I小T。”根据辛儿伦的判断,过去二三十年的IT行业专注于Technology(技术)运用,以及技术研发的价值。但IT不仅仅是Technology,IT是两个课题,是Information(信息)和Technology(技术)。
“未来30年,大I小T的时代来临,政府、企业、企业的IT部门、IT供应商等,关注的主轴将会更多在Information这个课题,这将会是一个绝佳的机会,而且是一个最佳的发力时间点。”这对于大数据分析专家Teradata来说,未来想象空间巨大。
按照辛儿伦的理念,当前互联网产业变革所诞生的优秀企业都可以拿这个逻辑来理解。“互联网+传统产业的边界延伸更多的是驾驭信息的课题上,在信息变革和信息安全保障下产生多元化的商业模式、创新性的思维,而不只是技术的延伸。”
“同时,消费者的需求也产生自主式的革新,从注意力经济转化成为消费者意向经济。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21