《ibm spss modeler数据与文本挖掘实战》_数据分析师书籍推荐
《ibm spss modeler数据与文本挖掘实战》
图书简介:
本书主要包括两部分内容:在数据挖掘部分,重点介绍了各种数据挖掘方法的基本原理及应用,包括回归分析、时间序列分析、因子分析、决策树分析、判别分析、聚类分析、人工神经网络、贝叶斯网络以及社交网络分析等;在文本挖掘部分,重点介绍了文本挖掘的节点,以及具体的实现过程。每一章都详细介绍了数据和文本挖掘的基本原理和分析过程,同时在实例中也介绍了SPSS Modeler中大部分节点的使用方法及应用步骤。
本书与同类书籍相比,安排了较多的实例,使读者能够边学边练,在短时间内就可以有一个较大的提高,方便读者熟悉SPSS Modeler的基本操作,并通过系统的案例使读者掌握应用技巧。
本书对于高校理工学科、经济金融学科及数量分析方面的学生,以及数据挖掘和分析方面的研究人员和从业人员等,具有很强的可读性、可操作性与可使用性,尤其适合商业销售、经济管理、社会研究和人文教育等行业的相关人员阅读。
目录
第1部分数据挖掘篇
第1章数据挖掘概述 3
1.1什么是数据挖掘 3
1.1.1数据挖掘的定义 4
1.1.2数据挖掘的发展阶段 5
1.2与传统技术的比较 8
1.2.3数据挖掘和OLAP 9
1.2.4数据挖掘和Web挖掘 10
1.3常用的数据挖掘软件 11
1.3.1SAS EM 12
1.3.2SPSS Modeler 13
1.3.3Intelligent Miner 13
1.4应用实例:目标客户分析 15
1.4.1研究方法 15
1.4.2数据分析 15
1.4.3研究结论 26
第2章SPSS Modeler软件概述 27
2.1软件简介 27
2.1.1软件发展 28
2.1.2软件界面 30
2.1.3软件特点 35
2.1.4软件功能 37
2.1.5软件算法 39
2.1.6高级功能 41
2.1.7软件安装 42
2.2行业应用 50
2.2.1通信行业 50
2.2.2ZF行业 52
2.2.3金融行业 53
2.2.4制造行业 54
2.2.5医药行业 56
2.2.6教育科研 56
2.2.7市场调研 57
2.2.8连锁零售 57
2.3数据挖掘流程 58
2.3.1业务理解 58
2.3.2数据理解 59
2.3.3数据准备 60
2.3.4建立模型 61
2.3.5评估模型 61
2.3.6应用模型 62
2.4应用实例:药物效果研究 62
2.4.1研究方法 63
2.4.2数据分析 63
2.4.3研究结论 69
第3章SPSS Modeler基础操作 70
3.1数据输入 70
3.1.1数据库 71
3.1.2可变文件 73
3.1.3固定文件 75
3.1.4SAS文件 76
3.1.5Statistics文件 77
3.1.6Excel文件 77
3.2数据流操作 78
3.2.1生成数据流 78
3.2.2添加和删除节点 79
3.2.3连接数据流 79
3.2.4修改连接节点 80
3.2.5执行数据流 81
3.3图形制作 82
3.3.1散点图 82
3.3.2直方图 84
3.3.3网络图 85
3.3.4评估图 87
3.4应用实例:产品销售预测 88
3.4.1研究方法 88
3.4.2数据分析 88
3.4.3研究结论 99
第4章回归分析 100
4.1回归分析模型概述 100
4.1.1模型定义 101
4.1.2模型应用 102
4.1.3建模步骤 103
4.1.4注意事项 103
4.2应用实例:客户流失因素分析 104
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20