快递旺季来临 大数据如何推动快递信息化
随着节日的到来,快递行业进入一年中最旺的季节。借助大数据分析,利用互联网工具优化快递流程、缩减物流成本、使得消费者获得更好的物流服务和体验,快递企业已经从低端劳动力密集型,向互联网高端管理转变。
电子面单
电子面单是一种高效率、环保的信息化面单。不同于以前快递包裹上的三联单或四联单。贴在包裹上的电子面单,全部是电脑打印,有的还有二维码标识,背面的不干胶使得消费者轻易可以撕下来。有了电子面单,一个包裹才能在上亿件包裹中被识别、处理、配送。
通过数据的流转,电子面单系统可以自动串联发货商家、送货快递公司、收货消费者以及干支线路的数据信息。基于电子面单串联的数据,可对快递链路进行一系列优化。
今年8月,国内排名前15的快递公司全部实现了电子面单的普及使用,这意味着占全国电商市场份额90%以上的主流快递企业全部完成了快递基础业务的信息化,大数据产品已经成为快递企业的标准配置。
据圆通、中通等快递企业的数据显示,使用电子面单,发货速度能提升30%以上。根据德邦快递的使用后的数据对比,录单效率提升了15倍。
大数据路由分单
根据目前快递企业收件路径,来自全国各地的大量包裹先集中到分拨中心,再按照收货地址将包裹归类后分拨往下一网点。
分拨中心流水线上会有大量的分拣员,他们需要看着包裹上的地址信息,凭记忆确定包裹下一站到达哪个网点,这个过程至少需要3-5秒。
“大数据路由分单”就好比人们出行时用到的高德地图,通过对海量的地址进行大数据分析,结合互联网地图的空间定位技术,可用数据实现包裹跟网点的精准匹配,准确率达98%以上,随着大数据沉淀,可向100%接近。
据中通和圆通等快递公司的数据显示,快递公司启用大数据路由分单后,分单的速度从3-5秒每单,下降到1-2秒每单,仓库分拣效率普遍提高50%以上。根据大数据路由的计算原理,订单一产生,就能够知道派送的网点,未来可帮助快递公司做网点派件量预报。
根据大数据处理产生的4级地址库,可以匹配消费者的配送地址到结构化的乡镇或是街道。有了这些架构化的地址讯息,就可以对揽件和派件地址进行精准定位,为快递员提供更精准的线路规划和配送分派。
“超时异常件”管理
快递公司的烦恼是什么?就是无法正常配送的“超时异常件”,即48小时尚未完成派送的包裹。通过大数据,将这些包裹订单数据筛选出来,可以帮助快递企业及时了解自己产生了多少“超时异常件”,哪个网点最严重,并通过订单及时了解原因,有针对性地着手改善。
目前,申通、中通、圆通、百世汇通等快递公司已经开始推广这个技术。据圆通快递介绍,运营了4个月之后,“超时异常件”的比例下降了30%。
物流预警雷达
物流预警雷达可以通过大数据对包裹量进行提前预测,来引导商家备仓发货,帮助快递公司调配运能能力资源,在“双11”这类旺季单量剧增的时候可以起到一个核心协调枢纽的作用。目前,国内已经有15家快递公司使用这一预警系统。在过去的两年“双11”,预警雷达成功地保障了海量包裹的有序顺利送达。
大数据反炒信系统
网购最难辨识的就是商家的信誉,虚假好评给消费者网购带来了很大困扰。如何杜绝商家刷单?大数据反炒信系统,控制好网购的最后流程、物流环节,对物流订单的流转数据进行全程监控,并且根据炒信订单特征,自动识别炒信运单号以及应对商家的商品订单。
未来,大数据越来越渗透到快递业务的每一个环节,成为快递的基础设施。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22