电商用户的数据挖掘与可视化展现
进入到大数据时代,电商用户数据的暴增与数据的社会化在很大程度上模糊了O2O电商企业数据的边界,这些由用户创造的海量数据远远超越了目前人力所能处理的范畴。庞大的数据量使得数据过载、数据冗余、数据捕获成本快速增长、数据价值不易获得成为O2O电子商务面临的新问题。
电子商务中用户数据每年增长约 60%,企业平均捕获其中的 25% ~ 30%,但数据的利用一般不足其 5%,用户数据作为O2O电商核心资源的商业价值远未被挖掘。 基于此,本文对“大数据”环境下O2O用户数据挖掘以及大数据可视化进行了分析展望。
大数据环境下O2O电子商务用户数据特征分析
相比传统的电子商务数据,O2O 用户数据并不仅仅局限于平台数据,即用户在 O2O 的交易数据,还包括了社交网络、用户移动终端的地理位置等数据。O2O电子商务用户数据为在 O2O 电商日常经营中产生和积累的与用户相关的交易、互动、观测数据。
O2O 用户数据具有大数据的特征。(1)体量大。在融入了社交网络和移动互联网的O2O电子商务中,O2O用户数据已不仅仅是用户交易数据,它拥有更加广泛的数据源,其数据规模会从TB级跃升到PB甚至是EB级。(2)类型多。O2O 用户数据类型复杂,它并不仅限于 O2O 用户基本资料、电商企业内部业务信息等海量的结构化和半结构化数据,还包括用户评论等反馈数据、移动终端数据和社交媒体等非结构数据。(3)速率快。用户数据伴随用户行为产生,这些数据往往是高速实时数据流,这需要实时的分析用户数据并根据分析结果对用户进行个性化服务。(4)价值高。用户是 O2O 业务的核心,对用户进行预测分析与深度复杂分析,对 O2O 电商企业无疑有着重大的价值,但庞大而繁杂的不相关用户数据,这也决定了其价值密度低的特性。
大数据环境下 O2O 电商用户数据挖掘分析
O2O 电商用户数据挖掘框架包括数据来源层、数据收集层、数据组织层、数据存储层、数据分析层、数据应用层。 不同于传统数据分析,大数据挖掘是一个知识自动发现的过程,在无明确的目标下从不同数据源获取数据,对数据进行预处理,并大量使用机器学习与人工智能算法对庞大的观测数据进行挖掘分析。
O2O电商用户数据挖掘着重解决这样一个问题: 在大数据中,分析各用户群体的特点,进而分析用户个人特点,获得有价值的知识,从而获取商业价值。数据挖掘流程包括:数据收集、数据准备、数据转化、数据抽取、数据挖掘、挖掘应用。(1)数据收集。用户数据以“流”的形式创造,由于3个数据源之间有交互,且其数据内容往往交叉,所以按照交易、互动及观测数据进行分类,然后通过Needlebase 等工具在用户消费的过程或其它行为中收集。(2) 数据预处理。数据预处理包括了数据准备、数据转化及数据抽取。数据预处理决定了挖掘结果的质量,从某种程度上来看,数据预处理往往左右着数据挖掘的成败。(3)数据挖掘及其应用。在数据挖掘过程中,根据不同的应用需求选择不同的挖掘模型,对数据进行深度挖掘。其中主要模型有:关联规则分析、分类分析、聚类分析等。得到数据挖掘结果后,对其进行解释应用,一般挖掘应用包括排名与个性化推荐、异常检测、Web 挖掘与搜索、大数据的可视化计算与分析等。
大数据环境下 O2O 电商用户数据可视化展现
用户数据可视化能够展现出更细化的市场、更精准的用户行为预测、更精确的用户需求。通过收集、加工和处理涉及用户消费行为的大量信息,确定特定用户群体或个体的兴趣、消费习惯、消费倾向和消费需求,进而推断出相应用户群体或个体下一步的消费行为,然后以此为基础,对所识别出来的用户群体进行特定内容的定向营销,节省营销成本,提高营销效果,提升平台的价值。
对 O2O 平台来说,来自用户的消费习惯、兴趣爱好、关系网络以及整个互联网的趋势、潮流都将成为电商行业从业者关注的热点,而这一切的获取和分析都离不开互联网大数据分析。基于移动互联网与移动社交平台的海量数据分析,将电商营销带入个性化时代。大数据魔镜能够对大数据进行收集、存储、计算、挖掘和管理,并通过深度学习技术和数据建模技术,使数据更加的智能化。电商企业在采用大数据魔镜引擎后,能够帮助其在海量数据中实现消费者人群的细分,行业细分以及消费者的喜好(行为)细分;通过这些细分关联,使得电商企业能够为细分的消费者投放精准的推送服务,从而满足消费者的个性化需求以及实现电商企业的营销增长需求。比如,可根据消费者不同地域的位置服务及特征,通过大数据魔镜制定出针对不同地理位置且个性化的精准消费者广告服务。
随着云计算与数据挖掘等技术的发展,电子商务数据,尤其是用户数据中所蕴含的价值会越来越容易被挖掘出来。电子商务企业已经意识到,电子商务正经历着从用户数为王,到销量为王,再到现在的数据为王的变迁,而最准确的商务决策来自于事实,即数据支持。数据挖掘以及大数据可视化等大数据技术应用必将成为O2O电子商务深入发展的关键,势必会为其带来巨大的商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31