大数据产业链之路还有多远
随着大数据炒作期的结束,国内外大量企业开始投入大数据实战,大数据生态产业链逐渐形成。整体而言,全球的大数据应用处于发展初期,中国大数据应用才刚刚起步。目前,大数据应用在各行各业的发展呈现“阶梯式”格局:互联网行业是大数据应用的领跑者,金融、零售、电信、公共管理、医疗卫生等领域积极尝试大数据。现阶段制约大数据发展的因素有三方面,分别是数据、技术和应用。
大数据产业链的参与者主要包括:
数据提供商、分析技术提供商、基础设施提供商、业务应用提供商。
基础设施提供商在基础设施方面,非关系型数据库和高扩展性、高性能数据库发展迅猛,竞争十分激烈,例如Redis、SkySql、Cassandra、 CouchDB、MongoDB等,Hadoop平台部署市场由于门槛较高,除了Cloudera、Hortonworks等少数几家由大型互联网公司高管创建的新兴公司外,其他市场均被微软、IBM、Amazon等传统巨头所占据。
Cloudera 是一家Hadoop数据管理软件与服务的提供商,为企业搭建和使用分布式平台提供服务,是大数据领域最强的解决方案服务商之一。公司目前的业务主要分为三大部分:Hadoop发行版(软件、一体机、云服务),Hadoop专业服务和Hadoop技术培训。让Hadoop变得更简单,Cloudera一直走在最前面,包括提供了第一个基于开源Hadoop的商业发行版,第一个添加NoSQL(HBase)到Hadoop平台,第一个在HDFS上提供SQL查询能力的平台(Impala),第一个将流数据处理能力(Spark)添加到Hadoop发行版的厂商。
Amazon 是一家通过云基础构架服务支撑其零售业务的大数据公司,其网络服务为客户提供基础设施产品。提供服务包括:亚马逊弹性计算网云(Amazon EC2)、亚马逊简单储存服务(Amazon S3)、亚马逊简单队列服务(Amazon Simple QueueService)以及Amazon CloudFront等。其优势是:1)用低廉的月成本替代前期基础设施投资;2)持续成本低:缩减您的 IT 总成本;3)灵活性:消除您对基础设施容量需求的猜想;4)速度和灵敏性更快地开发和部署应用程序;5)应用而非运营;6)全球性覆盖。
数据和数据能力提供商阿里巴巴则是手握海量数据的大数据参与者,拥有淘宝、天猫海量的在线交易数据,并融合微博、高德、友盟、UC浏览器、快的等各种应用数据,涉及金融、旅游、健康、物流等方方面面数据。旗下的淘宝网提供的淘宝卖家服务通过出售这些数据帮助淘宝店铺进行基础经营分析、商品优化分析、订单分析以及营销效果分析。产品包括数据魔方、淘宝指数、阿里经济云图、蚂蚁金融、淘数据等。
分析技术提供商在分析工具领域,Splunk 是最成功的新兴企业之一。该公司机器数据的搜索引擎,可收集所有应用程序、服务器和移动设备设备(包括物理、虚拟和云端),生成索引,从一个位置快速搜索并分析所有实时和历史数据。该公司已经取得巨大成功,是全球十家最有竞争力的大数据公司之一。
拓尔思(TRS)是中国最大的搜索技术和内容管理技术供应商,非结构化信息处理技术领域的领导企业。其数据中心具有强大的数据采集能力和强大的运算能力,以“平台+行业解决方案+服务综合”的产品线,为广大政府和企业用户提供产品和服务。
统计分析领域的Matlab、SAS,数据可视化领域的Visual.ly、Zoomdata、Chart.io分别提供可视化设计平台、分布式数据展示工具和数据库分析工具。
业务应用提供商在行业应用方面,广告优化、市场营销和金融等行业应用最为活跃。DOUBLECLICK是美国网络广告服务商,其核心技术是其专有的动态广告报告与目标定位(DART)技术,企业可以通过中央服务器管理各自的广告服务及统计报告。
互联网广告领域的最新模式——实时竞价(RTB)与大数据关系密切,Google等公司的广告平台已经充分利用其自身数据来优化广告效果,提升广告收入。 Lattice Engines聚焦于B2B销售行业的大数据应用,该公司的SalesPrism数据分析平台能够通过分析消费者消费倾向,向销售人员提供营销建议。金融领域大数据信用评估也开始流行,这让Lenddo等非传统金融企业也可以大规模开展贷款业务,该公司基于人们在社交媒体上的表现,将贷款服务拓展到了新兴市场上。
国内大数据市场与国外还存在一定差距,从市场规模来看,国内的大数据产业链还只是初具雏形。目前全球最具影响力的前15家大数据企业中还没有出现中国企业的身影,这也从宏观上表明当前国内大数据市场仍处在发展初期。
从发展特点来看,国内大数据企业更依赖于数据资源,而新技术、新商业模式的突破则相对缓慢。例如在基础设施领域,无论是百度、腾讯,还是淘宝、中国移动都推出了各自数据中心项目,通常以容量来衡量成就,而国外企业则已经把主要目光投向整体解决方案的设计,已经具备了较为清晰的、取得市场认可的大数据盈利模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31