大数据,助推电影票房的神器
大数据的话题,在电影业越炒越热。大数据可以预测票房,还能通过剧本预估票房体量。请关注——
今年中秋+国庆的“双节”档,电影再次扎堆上映。喜剧片《港囧》、魔幻片《九层妖塔》、警匪片《解救吾先生》等十几部中外影片“跃跃欲试”,盯准了这块假日大蛋糕。
蛋糕有多大?6月在上海电影节的现场,嘉宾们为“双节”期间的票房大盘给出了17亿到20亿的“估值”。
各家影片能分到多少?这不是一个全凭运气的“猜谜游戏”。实际上,票房的体量,完全可以在数据分析的帮助下进行预测。
在中国电影票房数据每年都在拔节生长的今天,娱乐产业数据服务机构“ABD爱梦娱乐”创始人雷鸣认为,在其他商业领域已经大展身手多年的大数据,早该用于电影产业。“数据化运营和决策一定是未来的趋势”。
人人都谈大数据
前不久,电影《捉妖记》以24.26亿的成绩,拿下中国影史票房冠军。
《捉妖记》上映前一周,雷鸣就在办公室的白板上写下:捉妖记,票房18亿起。
“典型的合家欢电影,还遵循了好莱坞式工业化制作流程,适用于所有社交场景,一定大卖。”雷鸣做出了这样的判断,而支撑判断的,是公司一套基于影视数据的票房预测模型。
大数据用于电影,早已不是一个新鲜话题。
最为人津津乐道的,就是郭敬明执导的《小时代》系列。在投资之前,电影出品发行方就在文学网站上对同名原著的点击量、点击用户身份进行了调研,并分析出了影片可能存在的核心目标受众。确定“标靶”之后,电影宣发方制定了一系列有针对性的营销活动,把他们圈定的用户“导入”电影院。
今年的上海电影节,同样也为大数据和电影开辟了专门的讨论时段。
导演兼演员身份的徐峥在“大数据助推大电影”的主题论坛上表示,大数据可以在电影生产制作的全流程发挥作用。
在选择电影题材的时候,可以借助大数据估计这部电影的票房量级、投资风险;剧本完成之后,可以根据一套评估系统来预估剧本的票房潜力,设置笑点、雷点,丰满人物个性。甚至找谁来演,什么样的演员组合能够最大限度撬动市场;拍好了之后具体营销组合拳怎么打……大数据都可以介入。
影视数据质量还不高
ABD爱梦娱乐主要用数据做三件事:精确预测即将上映的电影的票房(预测值与实际票房差距不超过20%视为准确);通过电影剧本预测票房区间;验证一个IP(Intellectual Property)是否适合改编成院线电影,同时也用数据来帮助公司的剧本创作团队完成IP内容开发。
影视大数据平台艺恩研究总监袁琳告诉科技日报记者,大数据确实可以在从电影立项制作到影片营销宣发的诸多环节发挥作用,不过现在的问题是,关于用户的数据积累还不够。“用户在线下购票的话,我们没法准确地知道这些人究竟是谁,得不到他们的人口统计学数据。”依赖影院的线下售票系统,很难描绘出清晰的用户画像。好消息是,近几年来,线上购票的行为增多,这些有迹可循的购买行为,可以帮助片方定位“观众是谁”。
在雷鸣看来,不仅线上的数据不够,线下的数据积累年头也太短。美国上世纪30年代就开始系统地记录电影数据,而中国的影视数据,现在还很难用“大”来形容。“真正无断点的系统记录其实是从2011年开始的,到现在为止也不到5年。”而且,由于市场高速发展,我国电影每年的数据都没有“遗传性”,很难找到所谓的“规律”。
能获得的数据,是全然真实的吗?也未必。个别地方存在票房造假的情况;有一些数据,则被视为秘密,比如电影真正的投资额;还有些数据半真半假,比如社交网络的播放数据、点赞和好评量,需要分析者拧干水分。
“数据整理对影视市场有利无害。”雷鸣说,影视行业“看起来很美”,但水也很深。目前,数据公司们也等待着中国电影市场能变得更加成熟,沉淀下更多的、具有分析价值的结构化数据。
上帝的归上帝 凯撒的归凯撒
搜狐视频前首席运营官刘春曾提醒,在大数据时代不要忘记艺术创作的重要性。用大数据指导电影,难免引发质疑,认为它搅浑了艺术这池清水,让电影显得太过功利化。
袁琳觉得,没必要把商业和艺术摆在互相矛盾的位置。“没有市场,就没有你艺术表达的阵地。从某种意义上来讲,市场是阵地,是基础。我们可以通过数据找到一些规律性的东西,这也不妨碍我们用精彩的创意表达出来。大数据之于电影,扮演的是“助推器”的角色。袁琳指出,它不该也无法主导电影的创作,它只能帮助拉近电影和市场的距离。
雷鸣也有类似的观点。他坦言,电影具有商品属性,充分了解并无限接近商品的受众和市场,对商品来说“天经地义”。不过,这并不意味着艺术创作就成为大数据分析结果的“附庸”。他强调,大数据不能指导具体内容。当影片的大致方向确定之后,编剧应该具有完全的自主权,自由运用他们的灵感和思维技巧进行创作。“大数据用来帮助提高效率、降低成本。我们一直在说的一句话,就是上帝的归上帝,凯撒的归凯撒。”
数据分析咨询请扫描二维码
数据分析工具推荐 数据分析工具的选择至关重要。不同工具适用于不同的需求和场景。以下是一些推荐的数据分析工具,根据您的需求 ...
2024-11-27选择适合您需求的数据分析工具 数据分析作为商业决策过程中的关键环节,工具的选择至关重要。不同的工具适用于不同的场景和需求 ...
2024-11-27数据架构文档的编写涉及多个方面,包括内容结构、编写原则和具体要求。遵循规范可以帮助团队更好地理解和管理数据架构,支持项目 ...
2024-11-27挑战与解决方案概述 在数字化时代,数据开放共享对于推动创新和发展至关重要。然而,这一进程面临诸多挑战。保护用户隐私、确保 ...
2024-11-27促进科学研究和创新 数据开放共享为研究人员提供更广泛的资源和合作机会,加速科学知识的发展。通过访问他人的数据集,验证研究 ...
2024-11-27数据组织与存储策略 数据模型是数据仓库和商业智能系统的核心,通过合理的数据组织和存储策略,确保高效、低成本、高质量地利用 ...
2024-11-27持续关注数据系统运行状态 - 数据设计与开发完成后,维护与优化工作成为至关重要的环节。这个过程需要持续且细致的关注,以确保 ...
2024-11-27数据服务未来的趋势 智能化和自动化: 随着人工智能和机器学习技术的飞速发展,数据服务领域正逐渐朝着更智能化和自动化的方向 ...
2024-11-27未来最有前景的行业主要集中在以下几个领域: 人工智能与机器学习:人工智能被认为是未来最具潜力的行业之一,其应用范围广泛 ...
2024-11-27根据多条证据,目前多个行业展现出良好的发展前景。以下是一些被认为具有最好发展前景的行业: 人工智能与机器学习:人工智能 ...
2024-11-27学习数据分析后,可以在多种类型的单位找到工作机会。这些单位包括但不限于: 政府机关:数据分析师在政府机构中扮演重要角色 ...
2024-11-27必备的职业技能 统计学基础 - 理解概率、假设检验、回归分析等统计概念。 - 运用统计方法对数据进行分析和解读。 编程能力 - 掌 ...
2024-11-27基础课程 - 统计学基础: 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识。这有助于分析师更好地理解数据背后 ...
2024-11-27数据分析领域涉及众多工具软件,涵盖了从数据处理、分析到可视化的各个方面。在选择适合自己需求的工具时,需要考虑数据规模、分 ...
2024-11-27在数据分析领域,选择合适的工具至关重要。不同的软件适用于不同的需求和技能水平。以下是几款值得考虑的数据分析软件: - Table ...
2024-11-27数据分析中常用的Excel与Python函数公式涵盖了广泛的应用场景。掌握这些基础和高级技巧对于成为一名优秀的数据分析师至关重要。 ...
2024-11-27Python是一种高级编程语言,由荷兰程序员Guido van Rossum于1989年圣诞节期间开始开发,并于1991年首次发布。Python的设计哲学强 ...
2024-11-27课程内容 数学基础: 高等数学、线性代数、概率论与数理统计、微积分等为算法设计和数据分析打下基础。 编程与算法: 掌握 ...
2024-11-27爬虫工程师是互联网时代中至关重要的职业之一,他们的工作内容主要涉及编写和维护网络爬虫程序,进行数据采集与清洗,设计系统架 ...
2024-11-27技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27