基于常规法则的大数据分析最佳实践
由于出现了新词汇、新技术、新产品和新提供商,“大数据”分析让人很陌生,但是经过检验的数据管理最佳实践方法一样能够在这个仍然属于新兴学科的领域发挥作用。
与各种商业智能(BI)和数据仓库一样,专家认为在开始进行大数据分析项目之前,清晰理解组织的数据管理需求和明确策略是非常重要的。大数据分析被广泛地进行讨论,而且各种行业的公司都充斥着新数据源和不断增多的信息。但是,在未明确这样做能够真正给公司带来什么价值之前,就投入大量的资源应用大数据技术,这就是所谓用户的最严重失误。
David Menninger是Ventana研究公司的一名分析师,他主要关注于BI、分析与信息管理技术。他认为不要在这个技术上表现得太激进,要先从业务角度着手,并且要与CIO、数据科学家和业务人员进行交流,一起确定业务目标和预期价值,然后再开始动手。
准确定义可用的数据和确定组织最佳利用这些资源的方式是整个过程中最关键的部分。Menninger指出,CIO、IT经理和BI人员需要确定所保留、聚集和使用的数据是什么,并且将它们与丢弃的数据进行比较。同时一定要考虑目前仍未涉及但可能会加入的外部数据源。
Menninger指出,即使公司不确定何时及如何应用大数据分析,尽早进行这种评估仍然是有好处的。此外,开始数据捕捉的过程能够帮助您准备好实现最终的跳跃。他说:“即使您不知道将使用它来做什么,也要先捕捉数据。否则,您就会失去一个机会,因为您没有足够的历史数据可以分析。”
大数据要从小开始
分析大数据集也一样要从小机会开始,然后再使用它们作为起点。随着公司不断地扩大分析的数据源和信息类型,以及开始创建最重要的分析模型,帮助他们发现结构化和非结构化数据的模式和相关性,他们需要注意那些对于预期业务目标而言最重要的结果。
Gartner公司的分析师Yvonne Genovese指出:“如果您最终只能寻找新的模式,而且它们毫无用处,那么您肯定遇到死角了。”
ComScore公司专门跟踪互联网使用,为企业客户提供Web分析和销售智能服务。它们很早就认识到需要某种大数据策略。但是,ComScore选取了一些非常有针对性的点,然后再慢慢建立自己的大数据分析项目。
ComScore的软件工程副总裁Will Duckworth说:“我们从小开始——提取各个数据流,再将它们传输到不同的系统。如果您无法达到一定的规模,您是无法一夜之间做到这一点的。”
鉴于公司处理的数据量,规模正是comScore重视的方面。早在2009年,当它一开始每天只采集到3亿条记录的时候——现在每天达到230亿条记录并仍在增长,Duckworth就开始寻找一些新系统和技术基础架构,以高效地完成comScore的数据处理。
不要忘记最终目标仍是大数据
通过利用开源Hadoop 技术和新型分析工具,Duckworth对开源环境进行了优化,这样SQL的业务分析人员便可以更容易地接受。他指出,在确定大数据分析实施计划时,公司一定要重视规模因素。
他解释说:“您一定要考虑到变化——从现在开始的半年内,您需要处理多少数据,您需要增加多少服务器,是否由软件来完成这些任务。人们并没有考虑到数据增长的程度,以及觖决方案部署到生产环境后的流行程度。”
在陷入大数据“新常态”之后,许多公司经常忽略的另一个方面是数据管理的“旧常态”仍然是有效的。
Gartner的另一位分析师Marcus Collins指出,“信息管理实践方法对于现在的大数据和以前的数据仓库都是一样重要的。即使是对于希望增加处理灵活性的公司而言,他们也要记住一点,信息是企业资产,应该一如继往地保持重视。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21