解读诺贝尔奖“大”数据:想获奖先搬家
2015年的诺贝尔奖已经公布,咱们中国的女科学家屠呦呦获奖,真是举国振奋的好消息。
众所周知,诺贝尔奖的设立,对物理学、化学、医学的发展起着重要的激励作用。自1901年诺贝尔奖首次颁发到2014年为止,在过去114年中,已经有889位来自物理、化学、生理/医学、经济学、文学等方面的杰出人士获奖。他们的研究成果影响着世人,改变着世界,为当今科学的进步做出了巨大的贡献。
“中奖”虽然绝非易事,但也有规律可循。获奖者都有哪些相似点呢?都来自什么地方?下面我们就通过一张图试着分析下规律。
这是一张记录了在1901年到2012年期间每一位获奖者信息的图片,包括了获奖年份,研究领域、所在机构以及学术方向。
看起来很复杂?且听小编下文分解。
首先总体来看,这张图的X轴代表获奖年份,Y轴代表获奖者的年龄,具体可以看上图的图例。图例上标示了所有获奖者的平均年龄,以及每个奖项获奖者的平均年龄。甚至标注了每一年每一位奖项颁发的人数,学历、性别以及获奖的时候所在大学的具体情况。
在名校工作的获奖者更多
由这张图可以看出,获奖者最多的七所大学分别是哈佛大学、麻省理工学院、斯坦福大学、加州理工学院、剑桥大学以及加州伯克利分院。这些都是世界名校,能进去其中工作的人都是领域内的佼佼者,而且这里不仅有优越的研究条件,还有优秀的合作伙伴,获奖者多也并不意外。
不仅要有成果,还要长寿
再来看获奖者的平均年龄,我们以化学奖来举例,所有获奖者的平均年龄为59岁,但化学奖获得者平均为57岁,不过近年来获奖人士的年纪普遍超过了平均年龄。这一方面是因为科学家们真的是“老骥伏枥,志在千里”,另一方面也是因为诺贝尔奖越来越倾向于“让时间先来检验成果”,这种趋势也带来了一些遗憾,给某个成果颁奖时,这个成果的核心人物已经去世了。
科学与性别无关
获奖者有男性也有女性,在这张图中都有统计数据,但这仅仅是为了统计之用。虽然目前来看,女性获奖者少于男性获奖者,但这背后有着复杂的社会因素,近年女性科学家们越来越杰出的表现已经说明了,其实性别并不重要,科学并没有国家、血统以及性别之分,只要在其领域中做出了卓越贡献就可以获奖。
想获奖?先搬家
你想获奖吗?那先搬家吧。这张图片还统计了获奖者的居住地,看来想获奖还得选地方啊。图中显示住在纽约的获奖者最多,有51人。位居次席的是巴黎,有23人之多,巴黎人不只浪漫,还是盛产诺奖的城市啊。怎么样,心动了吗?走,咱去巴黎吧。
团结就是力量
你知道诺贝尔奖可以几人共同分享吗?其实这种情况挺多的,在图中也有显示,那么究竟有多少呢?诺奖颁发了多少次呢?我们从诺贝尔奖的官方网站找到了相关数据。
获奖者多为博士
最后来看看获奖者的学历。由这图中可以看出,虽然在各个领域里获奖者以博士学历者居多,但也有以硕士、学士学历获奖的,这里边的差异是因为有些学科,硕士学位就可以了,不一定要博士学位才有更好的发展。在诺贝尔文学奖中,这一情况则不同。文学奖是比较特别的奖项,跟获奖人的学术高低无关,只跟你的作品有关,所以很多获奖者根本没有学位,而且没有学位的获奖者甚至占多数。还有一个奖项也是这样的情况,这就是诺贝尔和平奖。
从这张图中看,你会发现有些获奖者甚至很年轻,甚至还是个孩子,自然也没有学位了。例如2014年诺贝尔和平奖的获得者之一巴基斯坦女孩马拉拉当时才17岁,颁奖词称赞其“反抗针对儿童和年轻人的压迫,捍卫了儿童受教育的权利”。
居里夫人
图中还有特殊的注解,例如居里夫人是第一个两次获得诺贝尔奖的获奖者;简?丁伯根和尼可拉斯?丁伯根是唯一两兄弟都获得诺奖的亲兄弟,分别是经济学奖和医学奖。闻名世界的无线电之父马可尼是唯一一个没有学位的物理学获奖者。
简?丁伯根和尼可拉斯?丁伯根兄弟
2015年的诺贝尔奖已于10月5日至9日陆续发布,感兴趣的朋友也可以看看,今年的获奖者们是否吻合这张图中的规律。
最后,感谢科学进步对人类发展的推动,感谢获奖者们为世界做出的贡献。
注:
1、多次获奖的获奖者:居里夫人是第一个获得过两次诺贝尔奖的人(化学和物理)。
2、年纪最长的获奖者:莱昂尼德?赫维奇获奖的时候90岁。
3、最年轻的获奖者:威廉?劳伦斯?布拉格获奖时25岁(这个图表只到2012年,2014年巴基斯坦女孩马拉拉17岁获得和平奖)。
4、兄弟获奖:简?丁伯根和尼可拉斯?丁伯根是唯一两兄弟都获得过诺奖的亲兄弟(分别是经济学奖和医学奖)。
5、没有学位的获奖者:马可尼是唯一一个没有学位的获奖者(特指物理学奖)。
6、去世后获奖者:埃利克?阿克塞尔?卡尔费尔德(瑞典人)是唯一一个去世后获奖的人。
7、第一个女性经济学奖获得者:埃莉诺?奥斯特罗姆,是第一位也是唯一一位获得诺贝尔经济学奖的女性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29