大数据在高校教育信息化中的应用探究
随着互联网技术的迅速发展,大数据带来的信息风暴正在改变我们的生活、工作和思维。那么,当这场风暴席卷高校的时候,到底会给高校教育信息化建设带来哪些变革呢?高校是数据生产大户,中国高校数量多而且规模大,万人以上的大学非常多,在高校里上学的学生从招生、学籍、选课、成绩、饭堂、活动等方面产生大量的数据。在大数据时代,只有用好这些数据,才能更好地帮助教学、科研、学生管理等工作,大大提高高校的信息化水平。
1.教学评估
大数据分析可以应用于教育中的数据挖掘。目前教育机构已经积累了大量数据,使研究者有更多的新机会探究学生学习环境和状态。通过监测这些信息,形成教育大数据库,全面掌握学生学习的全过程,发现学生的学习常态。通过数据流的变动分析,总结教育规律、调整教学内容和教学模式,客观全面地评价学生学习成果和自身的教学成果。
2.个体分析
对于教育领域来说,大数据的应用让研究个体学习也成为了可能,让专门培养和针对性训练成为可能。通过学校数据中心分析学生的各类信息,如考试成绩的变化、借阅图书的种类、一卡通消费额度等信息,综合性地分析判断学生的状态。根据分析结果,对于不同的学生因地制宜地制定相应的教学模式、培养方案。另外,也可以借助学校的微信公众平台为学生推送其感兴趣的资讯信息。
3.舆情预测
学生中存在的问题和困惑,往往最先通过网络显露和传播。如果学生的意见和建议得不到重视或延误解决,就可能在网上形成炒作,个体情绪可能传染到群体,演变为群体的不满情绪,使网络成为舆论的放大器。通过分析学生网络访问轨迹实现积累监测,利用其需求、行为、动向等众多数据资源加强舆情分析和预警。另外,通过对学生数据的追踪和分析,能够发现情绪不稳定的学生或者受不法分子蛊惑的学生,及时将有可能发生的悲剧扼杀在摇篮里。因此,精准的预测分析能提升舆情管理工作水平,提高校园管理水平。
总之,大数据的教育应用可以为学生提供一个量身定做的个性化学习环境、一个灵活调整的可控教育系统、一个教育问题早期预警系统,为教师了解学生学习途径和方法提供了崭新的、可视的、可量化的新手段。
四、大数据在高校教育信息化应用中的挑战
1.从技术层面来看
(1)数据源的可用性
关于大数据的一个普遍观点是,数据自己可以说明一切,数据自身就是事实。但实际情况是,如果不仔细甄别,数据也会欺骗,就像人们有时会被自己的双眼欺骗一样。高质量数据的获取是确保信息可用性的重要前提。[5]高校数据的来源多种多样,包括各职能部门的基本业务数据、教学资源的多媒体数据、使用网络的行为数据、无线网络感知的位置数据等。数据模态千差万别,如关系数据、标量数据、图数据、流数据、XML数据、矢量数据等。既有重复性数据,又有冗余性数据,质量参次不齐,加工整理困难。这些校园化数据是否可用给大数据在高校中的推进带来极大的挑战。
(2)数据融合的可行性
众所周知,数据不融合就发挥不出数据的潜在价值,高校大数据面临的一个重要问题就是数据融合。作为高等院校,大数据的融合应该走在前列,必须彻底打通数据孤岛,将各个业务充分整合。然而,由于传统的业务系统缺乏长期规划,采用的技术包罗万象。据调研发现,目前高校所采用的数据库包括Oracle、Sybase、Microsoft SQL Server、Mysql、Visual FoxProd等。有些学校或部门甚至没有数据库,而是采用Excel管理数据。在这种基础上实现数据的有效融合,形成高质量的大数据,对于融合技术是一个重要的挑战。
(3)数据分析的持续性
教育的规律有时很难理清,成功的个体也未必能够简单复制,评价教育本身的指标都有一定程度的缺陷,需要几年甚至更长期的监测和不断的更正。因此,高校中的大数据分析,不仅仅是横向的对比,如职能部门间、兄弟院校间,更需要纵向历史数据的对比。无论是数据收集、数据清洗还是数据挖掘的模型,都需要随着每天产生的大量详实而琐碎的数据信息进行调整和修正,这也是一个不小的挑战。
(4)数据挖掘的复杂性
大数据分析无疑是整个大数据时代的核心所在,因为大数据的价值就产生于数据分析过程中。在高校大数据的应用中,无论是做个性分析还是舆情预测,都需要构建特定的挖掘模型。教育行业因为其特殊性,传统的分析技术如数据挖掘、机器学习、统计分析等并不能完全满足高校大数据分析的需求,因此,需要在数据预处理、算法模型、评价指标等方面做出调整。当然,数据挖掘的复杂性,不仅是高校大数据所面临的挑战,也是整个大数据领域的巨大挑战。
2.从实施层面来看
(1)数据共享意识
大数据时代需要海量数据作为基础,高校中的大数据,其中很大一部分来源于各职能部门。而现状是大量的数据分布在各个互相独立的职能部门中,甚至大量的信息资源成为了个别部门的私有财产。造成这种状况的原因一方面是因为年代久远,数据整理工作难度较大、工作优先级较低;另一方面是业务部门并不清楚哪些数据是可以被分享的、哪些数据是不能被分享的。归根结底,还是资源分享的意识不够。然而,信息资源只有在相互流动、形成规模效应的前提下才能够发挥出最大的价值,因此,还需要加强高校的数据共享意识。
(2)人员配备与组织结构
高校内部对于各职能部门间信息资源规划缺位,导致了建设进度不同、资源投入有差距、各部门各显神通一窝蜂建设,增加了数据资源共享共用的壁垒。在大力推行教育信息化之前,很多学校并没有专门的信息化部门,技术人员储备不足,甚至没有。高校大数据的推行需要一批既懂得相关技术,又熟悉业务流程的技术人员。人才的匮乏也是非常不利的一点因素——相比于商业环境下对研究实效的追逐,教育研究的缓慢与空洞显得相形见绌。
(3)个人隐私保护
教育说到底是一个交互的过程,交互的内容收集一定程度上与隐私等是矛盾的。目前大数据的发展仍然面临着许多问题,安全与隐私问题是人们公认的关键问题之一,如教师的工资收入,学生的生活习惯、好友联络情况、阅读习惯、检索习惯等。多项案例实际说明,即使无害的数据被大量收集后,也会暴露个人隐私。如何做到大数据采集与用户隐私保护的平衡是一个很重要的研究课题。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21