应用大数据分析技术 让安全危险看的见
水能载舟,亦能覆舟。互联网的普及和信息化建设的增强即有助于增强企业的竞争力,也给企业内网安全和关键信息资产的安全带来了极大的隐患。近年来,网络攻击呈现爆炸性的增长,手段也越来越隐蔽。攻击者的目的由炫耀技术能力转变为窃取企业机密、获取经济利益。
面对新的安全挑战,传统的、基于特征码识别的单体软件杀毒技术,往往对位置的恶意威胁缺乏防护和发现相应能力,开始逐步退出了历史舞台,取而代之的是以云计算为基础的现代互联网安全技术,并且以360为代表的一批新兴的现代互联网企业开始从思想到防御体系彻底颠覆传统企业安全。
在ISC 2015的开幕峰会中国互联网安全领袖峰会上,360公司董事长兼CEO周鸿祎发表了题为“看得见的安全”的主题演讲,演讲中周鸿祎首次提出了“网络安全新法则”,指出今天大多数已知的威胁和攻击都可以防御,但企业和机构面临更多的是未知的威胁和漏洞,所以传统的防火墙产品和防病毒技术已经力不从心,需要通过大数据技术的应用才能防御新的安全威胁。
基于大数据分析技术,将所有企业面临的安全威胁作为一个整体来看,用于防御变化莫测的新威胁,是当前业界安全技术发展的一个趋势。当然,这就需要安全厂商在数据收集阶段有一定的能力。恰好360作为最大的互联网安全公司,目前有超过13亿个安全探测点,还有数十万台服务器,安全大数据是其能力的核心,在威胁情报的数据收集阶段,具有天然优势。这些安全大数据可以被用来在威胁情报的生产过程中,产生价值更高,针对性更强的高质量威胁情报。
在产品层面,360拥有天机、天擎、天巡和天眼组成的终端和边界的安全大数据采集系。每一个用户在使用产品的同时,这些终端设备都可以实时感知各种威胁和攻击,汇集到云端,成为网络安全的智慧大脑。然后通过大数据引擎,进行关联分析,快速地找到有价值的数据,并通过可视化技术,让安全威胁展现在眼前。
然而对于企业而言,将已有的传统安全架构“一勺烩”全部替换也不太现实,为此360公司创始人、总裁齐向东在接受媒体采访时,给出了几个建议:通过对企业现有安全架构进行局部的改造,让基于传统的网络安全架构体系能够发挥更大的效用,或者是弥补更多的缺陷和不足。第一个就是加强终端,第二个是把数据打通,建立一个大数据中心,大数据中心构建一个新的威胁情报感知系统。第三个是把单兵作战的网络安全防护设备通过连接云的这种服务,让它提供具备云端的这种智慧的能力。
同时,齐向东表示,360“希望和全球的网络安全从业者携起手来,加强合作,共同探索和寻找解决网络安全问题的新方法,为提升网络安全贡献力量。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22