广州智慧城市建设应充分利用“大数据”
目前,随着各地“智慧城市”建设的火热进行,政府大数据应用进入实质性建设阶段,大数据在各个领域的应用价值初显。
在城市管理方面,一些地方合作推出的“警务云”已大显神威。比如,深夜时发现有人形迹可疑,警察可以通过云系统,找出这个人的各种信息,包括他何时坐过什么车、住过什么酒店、家庭情况等等。现在的大数据技术可以把所有的数据关联起来,为快速破案创造了有利条件。
然而笔者不久前采访广州超算中心得知,虽然广州“智慧城市”的建设也在推进,但这样的大手笔项目却很少。而连续四次蝉联世界500强第一名的天河二号超级计算机,目前也只有40%的利用率。
为何守着世界第一的超算,广州智慧城市的建设没有走在全国前列呢?有关专家认为,主要是政府对大数据的理解和重视程度远远不够。长期以来,我们的文化基因当中,数据文化很弱。没有把数据作为一种方法论,作为一种价值观,作为一种社会运转尺度来看待。
据了解,目前广州市各级政府掌握着全社会信息资源的80%,其中包括1000余个数据库。然而这些数据共享程度低。广州智慧城市的建设用到“超算”的,也主要是对20万个摄像头的数据进行分析与利用。很多数据因为部门利益和“保密”等因素,仅限于部门内部人员使用。而政府、企业和行业信息化系统建设也往往缺少统一规划和科学论证,没有统一标准,形成了众多“信息孤岛”,这给数据利用造成极大障碍。
维克托·迈尔—舍恩伯格所著的《大数据时代》一书中认为,“通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见”,这正成为“当今社会所独有的一种新型能力”。
总的来说,大数据对城市管理最重要的借鉴就是通过全方位的数据控制和分析,为政策制定提供高准确率的参考性和预见性,推动城市管理更加科学化。
在如今的城市,供水、排水、排污、供电、燃气、电话电缆、移动通讯等十几种地下管线盘根错节,基本上由各产权单位进行封闭式管理。这种多头管理给一些民生工程的推进造成很大压力。如果能采用建立数据标准和普查建库等方式实现地下管线的数据共享,地下管线的整治将事半功倍。不仅如此,通过对地下管线密度或受力情况的区域横向比对,还能预测/分析出工程项目对邻近管线的影响,从而使建设方案得到最大程度的优化,避免“拉链路”现象。
此外,大数据的真正价值在于挖掘和分析。大数据产业的战略意义不在于掌握庞大的数据信息,而是要提高对数据的“加工能力”,通过“加工”实现数据的“增值”。在政策制定方面,大数据作用应该更大。
目前,我国相当一部分公共政策的制定,通常是基于各个部门分别上报的零散数据,综合考虑专家学者的建言献策、民意调查等,科学实证的支持相对较少。为进一步提升公共政策制定的科学性,更应该引入“大数据”理念,将理性的数据分析与感性的经验判断结合起来作为决策依据。
如在交通方面,可以根据车流方向、密度来适时调整交通信号灯,让出租车在打车需求缺口最大的时间和地点出现;在健康医疗方面,通过研究气温、病种、门诊量的变化,可以预测未来传染病的发展趋势。今年初全国手足口病高发期间,有互联网公司就收集了相当宝贵的数据,向国家疾控中心提交了疫情预测和分析报告……
据市场调研机构预测,未来几年,中国大数据应用市场将呈现爆发式增长,并以近90%的年均复合增长率增长,到2018年,大数据产业规模预计将达到近6000亿元。从政府决策与服务,到城市的产业布局和规划,再到人们衣食住行的生活方式,都为广州的超算平台提供了广阔的空间。
当然,政府部门的大数据往往涉及机密,一旦泄露或者处理不当,将严重损害国家权益。这就要求IT企业加大对电子认证、加密解密、攻击检测与防御等技术的研发投入,加强产品系统应用安全。而政府部门要抓紧推进信息安全等级保护制度,加强对数据中心及信息系统运维的监督管理。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21