
大数据与数字化营销
【大数据与数字化营销】据对美公司首席信息官(CIO)的调查发现:仅23%的公司在收集顾客的人口信息和消费习惯之类的数据,并且利用这些数据进行战略决策。但其中却仅有46%的公司拥有数据分析的资源或系统。他们面对的主要挑战在于数据处理、信息管理和数据分析难题。数据管理平台(DMP)发展空间巨大,将是未来数字营销的理想工具。
文章全文:
To Handle Big Data, Advertisers Turn to DMPs
There’s a big to-do about Big Data and data management platforms (DMPs) in the digital advertising space. According to a new eMarketer report, “Data Management Platforms: Using Big Data to Power Marketing Performance,” DMPs enable marketers to use their Big Data to make smarter and more efficient marketing decisions.
Still even as brands use Big Data to build a holistic picture of their potential and real customers, many still find it challenging to extract cross-channel insight from that data.
Ziff Davis found 49% of companies polled worldwide had enacted a data management strategy as of fall 2012. And according to a survey from IT staffing service Robert Half Technology, just 23% of US chief information officers (CIOs) said they were collecting customer data such as demographic information or buying habits. Of that small percentage, less than half (46%) reported having the resources or systems to analyze the information they gathered.
A very general term, Big Data can refer to first-party customer information, third-party audience data, offline purchase data, online advertising behavioral data, campaign analytics and much more.
It can prove challenging to integrate disparate sets of data coming from social media, campaign analytics, offline sources or third parties. In fact, Big Data solution provider Infochimps surveyed IT professionals in North America and found that 83% of respondents said processing such information was a leading Big Data challenge, followed by managing the information (42%) and analyzing the data (41%).
If data is digital marketing’s currency, then the DMP is its bank. Big Data is stored and standardized here so that each data asset can be tied to a particular customer or audience segment. Once standardized, marketers can use that information to power multiple functions, both within digital and across a company’s broader marketing program.
DMPs can house both structured data, typically quantitative in nature, as well as unstructured data, often qualitative in nature—for example, social network data. Once all of these disparate sources are entered, DMPs can standardize them to build a larger, more descriptive picture of a customer or audience base that marketers can act on.
The DMP’s ability to take all of that Big Data from first-, second- and third-party sources and then organize it into meaningful audience segments makes it an ideal tool for audience targeting. This function—particularly for first- and third-party data—was also the top-reported competency of DMPs by US marketing professionals in a September 2012 surveyed by Winterberry Group.
Other than their role in organizing data on customers, DMPs are also a prime tool for campaign measurement, both within digital and across platforms.
“There’s real value in being able to address the audience first to determine what to buy,” said Mark Zagorski, CEO of data provider eXelate. “By looking at your audience and how they’re interacting with a particular ad or promotion, you can take those learnings and feed them into your current efforts and your next campaign.”
The full report, “Data Management Platforms: Using Big Data to Power Marketing Performance” also answers these key questions:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10