大数据:信息化作战的制胜法宝
大数据时代正向我们走来,大数据的广泛运用正在深刻影响和改变着人们的生产、生活和思维方式。目前,大数据在军事领域也得到广泛运用,各国都在积极推进有关大数据的军事研究开发项目。那么,大数据究竟在未来作战中会发挥什么作用?有哪些军事应用前景?将带来哪些军事变革?值得我们深入思考和探索。
让核心目标显形
美国的网络监控无处不在,只要你通过搜索引擎键入敏感词汇,很快就会被监视和锁定。有时一些看似并不相关的寻常词汇,也可能被情报人员盯上。
从看似不相关中找出相关性,这就是大数据的魅力。未来信息化战争中,“目标中心战”将是一种主要战法,此战法成功的关键又取决于对敌核心“目标”自身的识别、定位与锁定上,这也是困扰指挥员的难题。运用大数据有可能让未来战场更加透明,从而使这个难题迎刃而解。根据大数据的分析原理,每个目标,无论个人还是军事单位,都是数据的制造者,也都处在数据的包围之中。一旦成为大数据的锁定目标,就将“在劫难逃”。即使是深居简出的本·拉登,自认为与信息社会高度“绝缘”,但因周围的人不断产生数据信息,他也只能无所遁形了。
实现战争决策最优
在大数据时代,通过对海量数据信息进行分析挖掘,更加智能的计算机系统将可以辅助指挥员作出决策。基于大数据的计算机不仅能提供查询搜索功能,还将具备一定的“思考”能力,能够顺应形势变化搜集各种数据,筛选出有价值的信息,给出解决问题的建议。战时指挥员的工作,将变得越来越高效,只需从“大数据”给出的所有意见建议当中优选出最佳方案即可。
在大数据支持下,一些无人作战平台,如无人机、无人舰艇、作战机器人等,也将具有一定的“自我”决策能力。这些作战平台可以在计算机系统操控下,实现自主攻防。尤其是在与指挥网络失去联系而无法接收指令时,作战平台将可依托基于大数据的自身“智能”,迅速启动应急机制,自动识别判断目标性质、威胁等级,自主决定进行攻击或者启动自我毁灭程序。
私人定制——
使心理战的利箭更精准
楚汉相争,楚军在垓下为汉军所围。当夜,四面汉军皆唱楚歌,楚军军心震动,以为汉已尽得楚地、楚人,史称“四面楚歌”。这是一个典型的心理战战例。面对项羽麾下勇猛而著称的军队,汉军通过用楚地的歌曲唤起楚军的思乡之情,使其精神上濒临瓦解,无心恋战。
在大数据环境中,“数据脚印”可以清晰地还原每个人的心声。人们在信息空间当中的浏览、点击、搜索、购物、下载、上传、通话、微信、微博……所有的行为都有记录,最终都将会形成数据。于是你的性格特点、兴趣爱好等个性化特征都将不再是“隐私”。据此,心战专家就能够制作出现实版的“楚歌”,可以根据每个官兵个人的喜好和心理特点进行“私人定制”,采取更有针对性的措施,影响干预你的情绪和行为。这一切都可以在私人的网络空间中完成,比广播、传单等传统心战手段更具隐蔽性和诱惑性。
智能保障“送货上门”
美国有一家零售商,通过分析所有女性客户购买记录,制作了“怀孕预测指数”,并据此准确判断出哪位客户是孕妇,哪一天是她的预产期。可以提前将孕妇装、婴儿床等商品的优惠券寄给客户,并根据婴儿的成长周期定期向客户推介商品。凭借这项大数据技术,这家零售商开展的“送货上门”服务深受客户欢迎,商品销售额实现了快速增长。
供需矛盾在未来战场上将更加突出。大数据精准的预见功能使超前保障成为可能,这给战场保障带来了新的革命性机会。例如创建基于大数据的保障模式,让担负保障任务的部队,对平时与战时各个阶段、各种情况下的消耗、战损进行分析挖掘,就能够准确地预测出部队需求,合理调配使用各类保障资源,实现近乎智能化的精确保障。
变废为宝——
打响“数据保卫战”
“棱镜门”事件昭示人们,一场以大数据为核心的“超级情报战”已经打响,信息空间成为战场,数据成为战斗力的来源。以往情报特工、间谍都致力于机密信息的获取,这种情报战像宝库夺宝,关键在于破译密码,取得宝库的钥匙。基于大数据的情报战则转向了公共信息,利用大数据强大的分析功能,从看似寻常的数据中找出关系国家、军队重大决策的情报,像是垃圾堆里淘宝。因此,数据将越来越成为制胜的关键,谁能够控制和利用更多有价值的数据,谁就能够掌握作战的主动权,也就拥有更多更大的胜算。
大数据情报战无所不在、无孔不入,“数据保卫战”已经打响。一些现在看似不起眼或无用的数据,随着数据挖掘技术的创新,将来可能会变得至关重要。未来数据安全,必将上升至国家安全层面加以重视,必须从现在开始构筑好数据安全的顶级防护层。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22