利用数据分析做好客服管理,提升客服质量
数据信息化时代,市场竞争日益激烈,数据分析已成为企业运营的一项常规基础性工作,企业利用数据挖掘市场机会,洞察客户需求,提高运营效率,降低运营成本,并减少运营管理决策风险。
作为最直接与客户接触的部门,客服部,在服务客户的过程中会产生大量的原始数据,如果客服部能利用好这些数据,做好统计分析,将会帮助客服部及时发现问题,做出科学、合理的决策,从而提升服务质量,同时详实的数据也便于企业内部沟通与分享。
客户服务软件提供商-易维帮助台,基于saas模式,支持工单管理、多渠道客服、帮助中心,数据统计,并提供远程协助,适合预算有限的中小企业,也适合集团公司的协作合作。其中的数据统计功能,能为企业提供多达40余种的数据报表,让企业全面掌握客服部的客户服务情况、度量服务绩效、客户规模及结构状况等。
易维帮助台的数据统计报表主要分为三大类,包括绩效指标,分布排行和客户分析,通过下面的文字我们来了解其数据统计如何服务于企业的客服运营管理,提升客户服务质量的。
绩效指标
主要衡量客服的工作数量和质量,在选择的时间范围内,单个客服或客服组处理工单的数量,处理工单所需的时长、SLA达标率、问题解决率、客户满意度等等。
每到统计客服绩效的时候,企业就可以把易维帮助台的绩效指标作为参考,在单位时间内谁处理的工单数量多,响应时长短,解决时间快、解决率和客户满意度高,来判断客服的服务情况。
分布排行
针对客户服务请求和工单属性数据的分布分析,以及客服工作的排名,主要包括了服务请求分布,工单属性分布、Top10客户统计和Top10客服组统计。
服务请求分布中的时间段分布和IP地址来源分析,可以让企业对某个时间段的客户服务请求了如指掌,根据时间段和IP地址的波动来安排客服值班数量和时间,免于企业浪费资源,客服又能得到充分的休息。
工单属性分布中可以查看工单类型、服务目录中哪一项占比高。如果工单中问询占比高,是不是可以考虑增加客服人手;如果服务目录中对产品的升级问题占比高,是不是应该考虑在帮助中心的知识库发布关于升级问题的文章,或者让研发部去修正bug。
客户分析
统计了直接与工单相关和参与社区活动(分享、评论、提问、回答)的客户,通过这个分析,让企业了解客户的活跃度和黏性。
在客户分析的概览中显示企业客户的存量和增量,客户的活跃度,客户是企业/个人,以及企业的客户规模分布。
Top10客户/客户组,展示哪一个客户或客户组(企业)最为活跃,提交的服务请求最多,针对这些数据企业可以判断谁是重要客户,或者通过活动增加不活跃客户的黏性。
以上内容小编只介绍了易维帮助台部分的数据统计报表,用户可到他们官网注册,试用其他数据报表。另外易维帮助台支持企业完整导出原始数据记录,进行更为专业的数据挖掘与分析,相信这将会成为企业调整计划或制定政策有力的依据。
var articleInfo='数据信息化时代,市场竞争日益激烈,数据分析已成为企业运营的一项常规基础性工作,企业利用数据挖掘市场机'; var articleTitle='利用数据分析做好客服管理,提升客服质量';
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26