数据的价值:数据有哪些商业模式
数据是非常有价值的,它有助于创造优品、形成一个进入壁垒,甚至可以直接货币化。本篇文章将想分析「公司利用数据的价值」,将有三部分组成。
在这篇文章中,我将谈谈对数据进行货币化的重要途径。然后,我将提供一个列表,主要说说有关数据集的一些具体商业模式。这份列表将随着时间的推荐而扩大。
根据维基百科的资料,「商业模型是一个理论工具,它能显示一个公司在以下一个或多个方面的价值所在:客户,公司结构,以及,以营利和可持续性盈利为目的,用以生产,销售,传递价值及关系资本的客户网。」数据的商业模式就是数据是一个不可或缺的组成部分。如果你删除数据,那意味着你的业务会失败(或者至少遭受极大的损失)。
举个例子,亚马逊的核心业务数据。他们的历史交易数据帮助他们分析还有多少库存持有以及如何定价产品。此外,有关产品的数据视图和购买推荐引擎,驱动着销售的大部分数据。作为锦上添花,这一切是一个良性循环:建议购买,这导致更多的评论,进而导致更好的搜索引擎优化和更多的流量,从而带来更多的客户和更好的建议。如果亚马逊不那么有效使用数据,这将是一个规模小得多的公司。
数据业务模型最好的部分是,他们经常有和「亚马逊一样」的积极正向反馈。在每一个业务模型中,你越是用数据来赚钱,你得到的结果是,它可以帮助你赚更多的钱在未来更多的数据。这是一个美丽的系统。
数据是产品或服务。如果你有一个有价值的数据集,别人会支付访问,那么你可以直接出售(如Factual、FullContact、Yodlee公司)或建立唯一的接入点和间接出售它(如DataFox、Mattermark、彭博和LoopNet)。
数据有助于推动收入。当你了解客户的喜好,你可以提高有关产品的建议,并大大增加每个客户的终身价值。这是为什么亚马逊和大多数电子商务公司更成功的原因所在。如果你正在构建的内容存储库(这是数据的一种形式),你可以用它来驱动广告。你还可以使用数据你的用户数据定位更好的广告赚钱,像Facebook和Twitter就是这么做的。
数据有助于提高利润率。可能的方式包括转化渠道的优化、价格优化、准确的供需预测。例如,亚马逊在线市场里的每家公司都使用A / B测试。例如,提高利润率可能看上去不像是一个巨大的交易,但能够使得收购成本降低40%,同时收入增加50%。通过产品推荐可以把一个企业从业务不可行变成很赚钱。
上面的商业模式是伟大的,但有些抽象。你怎么能把它们变成实际的业务?下面是对不同类型的产品的一些具体配方:
内容公司
建立一个内容网站,利用参与数据来决定制作哪些内容(如BuzzFeed,Bleacher Report)
建立一个用户生成内容的网站,显示相关广告、会员链接、产品推荐旁边的内(例如Yelp,Pinterest,Quora)
使用行为数据来创建更好的内容建议和更高的订阅,然后收取使用费用(如Pandora,Netflix)
电子商务
使用购买和转换数据,以实现利润最大化的价格(如亚马逊,eBay,大多数电子商务公司)
使用数据来创建更好的产品推荐(如Warby Parker,Lumoid,True&Co)
(这两种配方也可以应用到其他公司,如SaaS的初创企业,但对利润率较低的电子商务公司有更深入的影响。因为较低的利润率,一个SaaS公司的利润率从50%到75%这是伟大的,但电子商务公司20%的利润率就足以保证它变成一个真正的生意。)
数据提供商
出售优质的数据(LinkedIn订阅,IMDB Pro,DataFox,LoopNet)。
出售API访问原始数据(Factual,Clearbit,Yodlee)
帮助客户增加他们的数据集与外部数据(如Factual的位置数据,和Zephyr Healthf的健康数据,Socrata的政府数据)。这不同于销售数据,因为该模型更多的是向客户销售一个完整独立的数据集。这种模式更多的是帮助那些已经有客户的一些数据的公司。这种商业模式往往是更加依赖于整合和删除重复数据,通过算法在进行数据采集。
B2B和B2C工具
用产品使用的数据构建模型(如LendUp的信用评分,Sift Science的欺诈检测,Framed Data的流失预测,Metromile的汽车保险)。增加产品的使用会导致更好的模型,这两者都是更有价值的客户和更多竞争对手难以复制。
建立一个消费者应用程序,为客户收集数据节省了时间,,结果(如收件箱一样的组织工具Unroll.Me,购物相关的工具,如Honeyand 和 Two Tap,,以及像Bento一样的智能发射器和)。此数据可以用于更好的建议或广告定位,并且通常可以通过会员费被货币化。
打造一个SaaS产品,使得一些行业的效率更高,通常是通过在线的形式代替传真、语音邮件、电子邮件。使用表格数据构建杀手锏(如FlexPort,SimpleLegal,Sourcery)
所有这些商业模式的,最后一个是我的最爱。它的建立,可以为效率发挥销售的工具,使用该工具作为一个特洛伊木马来收集数据,然后把数据变成一个巨大的竞争护城河。这种商业模式使得它容易建立一个有价值的数据集,因为你并不需要开始的数据-。你只需要简化客户数据录入。然后,一旦你有一个数据集,你是不可阻挡的。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21