电信运营商该如何利用大数据
大数据市场前景广阔。市场研究公司MarketsandMarkets最新发布的一份报告预计,从2013年到2018年,全球大数据市场将会出现年均26%的增长率,即从今年的148.7亿美元增长到2018年的463.4亿美元。
从网络数据到云计算,再到大数据,互联网时代真的变了。如今全球范围内的许多企业都在进军大数据应用市场,同时,大数据也为电信运营商带来了新的盈利空间以及新的挑战。
互联网产生大数据,随着互联网技术的不断发展,数据也将像能源、材料一样,成为战略性资源。如何利用数据资源深挖创新、提升效益,是诸多IT企业的追求目标。大数据因其市场需求广阔、后续增长潜力大、投资前景好等优点,后续发展持续被看好。
如今,“大数据”早已渗透到我们的生活中,衍生出了形形色色的数据应用,涵盖交通、医疗、金融、文艺、体育等各个方面。大数据促进了信息融合和产业跨界,也引发了更多新业态出现。其中,获利最多的当属IT企业。
在国内,腾讯这个移动互联网巨头是最早尝到大数据甜头的企业,其从2003年起已经开始努力做手机QQ的尝试。现在,几乎每个拥有手机的网民都是手机QQ用户。另一个互联网巨头百度的新一代搜索引擎的重要支柱之一就是大数据。依托大数据,百度新一代搜索引擎才得以为用户提供更便捷与智能的医疗、交通等服务。以医疗为例,用户可以在百度搜索引擎中便捷地获取相关病症的原因、症状、治疗等信息;甚至可以通过搜索引擎,在线咨询医生、在线挂号,这大大降低了百姓获得医疗信息和服务的门槛。除此之外,阿里巴巴的云计算、奇虎360的商业模式、微信的运作自如……这些IT大佬们的得意,无不与“大数据”这个词语紧密相连。
在国外,大数据也被许多科技企业看作是云计算之后的另一个巨大商机,包括微软、谷歌、亚马逊和微软在内的一大批互联网巨头纷纷掘金这一市场。谷歌基于搜索数据成功建立了盈利模式;亚马逊通过云技术、大数据构建了电商帝国……大数据引发的信息融合正在改变着IT企业的发展方式。
在众多的IT企业中,乘着大数据的春风,运营商也迎来了新的发展机遇。现如今,互联网的发展已经深化到了移动互联网阶段,运营商在大数据领域具有先发优势。
运营商的用户数量巨大。运营商凭借多年积累下来的网络运营数据和用户业务数据,已经为其堆积了巨大的数据财富,这是移动互联网企业难以望其项背的。相对于互联网数据,运营商拥有的用户数据优势明显。首先,用户在办理固定电话和手机入网手续时需要提供实名信息,诸如年龄、性别、单位等;其次,运营商能够掌握用户的电信业务消费信息,诸如电信业务类型、业务资费、通话双方基本信息等;再次,运营商基于位置的电信服务可以精确获得用户的地理位置信息;最后,运营商拥有庞大的用户互联网访问量信息。基于这些信息,运营商完全可以通过深挖用户需求来创造新的商业价值。
可见,运营商利用大数据来经营市场是大势所趋。电信与媒体市场调研公司Informa Telecoms & Media前不久出示了一份调查结果指出,全球约有48%的运营商正在实施大数据业务。该调研公司表示,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右,成为运营商的一项战略性优势。
因此,运营商如果能够通过技术创新,不断释放其管道中庞大数据的潜在力量,势必称霸移动互联网。不过,随着互联网企业不断地推出互联网公司端,运营商的优势也在慢慢减弱。运营商尽管已经占了先机,但面临的挑战也不小。
移动互联网时代讲求不断创新、不断革命。腾讯很聪明,手机QQ和微信左右手互动,得心应手。马云也很厉害,自己把自己拆了,搞了20多家的垂直小公司,业务搞得生龙活虎。沃尔玛的尿片与啤酒的案例更有创意——沃尔玛通过数据分析发现了一个有趣的现象:尿片与啤酒的销量总是成正比。于是该公司做了一次大胆尝试,当把两类商品摆在一起时,其销量会变得更大……
运营商要把客户吸引过去,需要持续地创新,用互联网的思维把用户大数据平台建设好。虽然目前运营商们都在谈“去电信化”,但与互联网巨头们相比,运营商仍缺乏互联网运营经验,对终端的掌控力度也不足,业务创新能力相对落后。业内人士认为,面对移动互联网带来的庞大的数据挑战,电信运营商的转型之路必须要围绕海量数据所带来的商机作深度挖掘和分析。
其实,运营商可以利用大数据分析用户的电信业务数据,深度挖掘用户需求,建立业务模式。比如,可借鉴互联网企业的关联推荐技术,运营商可向用户推荐电信关联业务,实现精细化营销。运营商可以利用基于云计算的大数据分析系统自动找到与该类商品相关联的其他商品并推荐给该用户。一方面给用户购买商品提供了便利,另一方面运营商也可从中增加广告收入。
大数据时代,带给用户更好的业务体验是掌握产业链话语权的关键,因此,只有在大数据分析的基础上进行商业模式创新和业务创新,运营商才能在激烈的竞争中立于不败之地。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26