农业大数据展望:六大领域数据亟待推广
随着农业的发展尤其是农村电商的发展,农业上下游的农资销售、农业生产、农产品流通数据以及与农业关联的土地流转、气象、土壤、水文等数据,均获得大规模积累沉淀,这些大数据将成为农业决策的“大脑”。
继农村电商后,农业大数据获得决策层关注。
在近期国务院印发的《促进大数据发展行动纲要》中,要求推进各地区、各行业、各领域涉农数据资源的共享开放,加快农业大数据关键技术研发,推动农业资源要素数据共享。商务部等三部委印发的《推进农业电子商务发展行动计划》则强调,将移动互联网、云计算、大数据、物联网等新一代信息技术贯穿到农业电子商务的各领域各环节,切实增强自主创新能力。
21世纪宏观研究院认为,随着农业的发展尤其是农村电商的发展,农业上下游的农资销售、农业生产、农产品流通数据以及与农业关联的土地流转、气象、土壤、水文等数据,均获得大规模积累沉淀,这些大数据将成为农业决策的“大脑”,纾解当前农业产业链因信息不对称产生的痛点,从而驱动农业向精准化、网络化、智能化转变。
六大领域农业大数据亟待推广
当前,中国农业正处在以小农经营为主向规模化、机械化、集约化过渡的阶段。由于粗放生产、分散经营和农业自身的季节性、地域性特征,信息不对称,成为贯通农业产业链的共性问题。当前农业产业链令人头疼的四大痛点问题,根源之一往往在于信息的缺失:
一是种不好。种植、养殖的人力物力消耗大,农产品质量相对不高。这大多与农业经营者对种养技术和对病虫害、疫情信息把握不足有关系,也跟人力成本上升、使用假冒伪劣的农资产品有关;
二是销不出。农产品滞销、卖难问题多地频发,这往往由于农业经营者对同类产品生产数据估计不足,盲目生产而造成集中上市,另一方面则是消费者对农产品质量缺乏足够的信心;
三是地难租。扩大生产规模租不到地,这既与地块分散、资金短缺有关,又与缺少土地流转信息渠道相关;
四是钱难借。除了抵押物,农业经营者难以提供充分的信用数据,因而往往难以借到钱,这也限制其更新生产设备、扩大生产规模。
上述四大痛点问题,涉及到农业经营者与政府、上游的农资企业、下游的消费者、金融机构等多个主体之间的信息对接。21世纪宏观研究院注意到,在打破“数字鸿沟”方面,国内已有不少机构、企业进行了初步探索。依据目前的探索,至少六大领域的大数据将发挥作用:
其一,生态环境数据,包括气象、水文、土壤和病虫害、动物疫情数据。这些数据是农业日常经营调整农业用水、农业产品投入的主要依据,准确掌握这些数据将有助于做到精准种植、养殖,减少资源浪费和成本投入。
其二,农业技术及农资流通数据。掌握农业技术能保障农产品高效、丰产,而基于农资流通数据的分析,则为农业经营者选择农资产品提供判断依据。种子、种苗的流通数据,亦可判断某个品类农产品的生产规模,为调整规模的依据。
其三,农产品价格与农产品流通数据。生产规模的调节、生产品类的调整,必须要事前获知农产品价格和各主产区的产销情况。另外,通过B2B、B2C电子商务平台促使农产品供求信息对接,能拓展销售市场,提高农产品价格。
其四,土地流转数据。通过土地流转供求双方信息的对接,促使流转更高效率,减少一方撂荒、一方找地的情况出现。
其五,农产品质量可追溯数据。通过上述的农资使用数据、生产流通数据的整合,可构建出从农场到餐桌的可追溯数据,以消除消费者对农产品质量的疑虑,提高农产品的购买率。
其六,农业经营者征信数据。前述数据可纳入银行、农村信用社以及保险机构的征信系统,作为发放贷款、设置农业保险的信用依据,以此推动金融和农业的融合。
21世纪宏观研究院认为,随着上述六大领域农业大数据的推广应用,将降低交易成本,提高生产效率及产品品质,提升农产品交易效率。从本质上看,则是促进粗放分散式经营和规模化、集约化经营向精准化、智能化经营的转变。
涉农部门需多方合力
围绕着大数据与农业的融合,农业链条上的不同产业或迎来生态的转变。
以大数据驱动下的单一农场为例,经营者将更多使用绿色、高效的农资产品,早已水涨船高的简单劳动力将被替换,而适应大数据的知识型、技术型“新农业经营者”将有更多的用武之地。如适应“水肥一体化”的发展,水溶性肥料、液体肥将获得发展,而此前大行其道的普通化学肥料将因为颗粒不能完全溶解而堵塞滴灌设备,则可能遭到市场的淘汰。
不过,需要指出的是,农业大数据技术多数还处在起步阶段,未能做到足够的智能化;承载农业大数据的农业物联网、智能监测设备等售价过高;另外,由于推广力度尚不大,农业经营者尚未有足够认识。
21世纪宏观研究院认为,当前无论是“电商下乡”还是大数据产业,都处于初级阶段。依托大数据技术广泛推动农业发展,在短时间内并不现实。农业大数据市场还是一个充满机遇、有待开发的市场。为此,需要政府部门、涉农企业、大数据企业和农业生产经营主体多方合力,共同推进农业大数据的示范与推广。
对政府而言,首先应当推动大数据的基础设施建设。这包含两个方面,一是要大力推动通信基站、电信宽带的建设,为各类农业经营者“触网”、联通大数据提供基础;二是要尽可能开发政府掌握的各类涉农大数据,包括天气数据、农业用地的各类元素含量数据、病虫害和动物疫情的监测数据,以供农资企业合理调配生产,并制定针对各区域各品种的农资解决方案。
其次,政府需要提供政策支持,引导涉农企业、大数据企业构建以品种或区域为中心的农业大数据平台。让农业大数据服务成为企业的直接盈利项目或配套的增值服务。
此外,还需要引导农业经营者主动向大数据农业转型,对优秀案例做示范推广,引导农业经营者学习“云上的示范田”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31