京公网安备 11010802034615号
经营许可证编号:京B2-20210330
PRINT过呈是最常用的SAS过呈之一。我们在生成了一个数据集之后,如果不是太大,一般都用一个proc print ;run;过程步来列出数据集的内容,这样可以检查变量与值之间对应是否正确,数据输入是否正确。为了列出一个指定的数据集,在PROC语句中使用DATA=选项指定要列表的输入数据集名。
在过程内使用VAR语句可以指定要列出的变量并指定顺序。比如,
proc print data=c9501;
var name chinese math;
run;
在过程中使用WHERE语句可以从输入数据集中选一个子集来处理,在PRINT过程中使用WHERE可以指定只列出满足条件的观测。
SAS的输出都显示在输出窗口。在运行了多个过程后,输出窗口积累了多个过程的输出,有时不易找到或特定的结果。新版本的SAS系统提供了一个结果管理窗口来管理输出,叫Results窗口。这个窗口缺省是打开的,固定放置在运行环境的左半部分,如果没有可以从"View - Results"菜单打开。
3.标题及全程语句
TITLE'标题内容'; 添加标题 ,为了取消这个标题,只要用一个空TITLE语句,即TITLE;
FOOTNOTE 添加脚注
OPTIONS 可以规定系统运行的一些选择项,比如输出是否每页有页号,是否有日期,输出的行宽,输出每一页的高度(行数)等等。
4. 计算总计与小计
用BY语句与SUM语句就可以既计算总和也计算分组小计。比如,我们除了要计算学生购买课外书总支出外还想分男、女生计算总支出,可以用下面的程序。注意由于数据集BKMONEY中没有性别的信息,我们用了带MERGE语句的数据步来横向合并C9501和BKMONEY两个数据集 。
3.3汇总表格
PRINT过程可以制作列表,它列出所有观测。当观测个数很多时,这样的列表意义不大。TABULATE过程制表不是列出观测,而是计算观测的分类统计量,绘制统计量的表格。这对于数据的汇总比较有用。TABULATE可以作出很复杂的表,其一般格式为:
PROC TABULATE DATA=数据集名;
CLASS 分类变量;
VAR 分析变量;
TABLE 页维说明,行维说明,列维说明/选项;
RUN;
其中CLASS语句给出分类变量,用分类变量可以给观测分类,计算统计量时可以对每一类分别计算。VAR语句给出区间变量。TABLE语句规定了绘制什么样的表格。我们用例子说明:
例1 对C950IBK数据集,我们希望表中绘出男、女生的课外书支出总和,
因为变量SEX和AMOUNT中间用逗号分隔,所以SEX在行维,表格的行用SEX的值区分,AMOUNT在列维,它画在列标题中。如果只是想统计男女生人数,可以只用SEX 一个变量。
区间变量的缺省统计量是总和,分类变量的缺省统计量是频数。如果我们要计算其它统计量,可以用"变量名*统计量名"的形式。统计量名包括N,NMISS, MEAN, STD, MIN, MAX, RANGE, SUM, USS,CSS,STDERR,CV,T(检验均值为O的t统计量值),PRT(t统计量的p值),VAR,SUMWGT(权数变量的和),PCTN(某类观测占总观测个数的百分比),PCTSUM(某类观测的总和占全部总和的百分比)。
例2:用如下程序求男、女生的数学、语文成绩平均值及标准差:
上面的表格只分类计算了统计量值,如果要计算总的统计量值,只要加一个ALL关键字。table sex,all (math chinese)*(mean std);
可以在TABULATE过程中使用KEYLABEL语句指定各统计量的标签。其格式为KEYLABEL关键字='标签';或者用如下方式:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08