
大数据时代如何加强统计档案信息化管理
大数据是用来描述和定义信息爆炸时代产生的海量数据,统计部门需要积极应对大数据带来的环境变化和需求变化,更好地开展统计档案利用工作,更大程度地发掘档案的潜在价值,更加全面地提供档案信息服务,从而实现统计档案信息化管理的跨越式发展。
走进大数据
随着经济社会的快速发展,特别是近几年经济结构和社会布局不断发生变化,统计档案资料急剧增加,同时,社会各界对统计档案的需求也大幅增加。巨量资料、大需求推动着统计档案的收集、整理和利用进入大数据时代。统计部门每年都要接待大批查阅统计档案人员,每年都要调阅数以万计的各类案卷。如何从繁杂的个性化需求和数量庞大的案卷中认识和利用规律,如何在大量提供的数据中确保企业、调查对象隐私安全?这需要统计数据的利用情况,这个过程,我们可以视为一个通过“加工”实现数据“增值”的过程。但是,统计部门如何提高对数据的“加工能力”?必须首先搞清楚大数据给统计档案工作带来的变化,根据变化寻找应变办法,提升统计分析能力。
“三大”趋势
目前,统计档案的利用取得了较好的社会效益和经济效益。但在利用种类上,多数仍局限于“实际利用”,即有特定实用目的的一般性查询利用上,只有人次数、查阅卷次数等数据,缺乏综合分析、研究预测等数据加工过程,更缺乏利用偏好规律、利用趋向等加工结果。简单的数据对于一般利用者来说意义不大,对经济发展、规划、预测和调控来说更是无关痛痒。然而,随着大数据时代到来,统计档案管理将逐步呈现“三大”趋势,也将给现有的统计档案利用带来相应的挑战。
一是大档案。载体形式更加广泛,一切与经济社会有关的、经过统计部门调查取得的文书、数据、声像、实物都被作为统计档案。数字化档案体量更加巨大,原有的纸介质统计资料,以及一切非数字化的统计档案都将通过信息技术不断地加工成电子档案。
二是大服务。大数据时代统计档案服务将朝着社会化、多元化、开放性和先进性方向发展,档案服务以利用者的个性化需求为导向,提供网络化、智慧型的服务。
三是大开发。在传统管理方式下,档案利用只是提供被动的查阅服务。在大数据时代,档案利用将延伸到使用大数据技术对档案进行大量加工和二次开发,更加注重分析、发现与预测,为利用者创造更多价值。
积极应变
面对大数据给现有统计档案利用工作带来的挑战,统计部门应积极应对,全面提升数据加工能力。
做好利用统计项目调整。一是将利用统计的关注点从数量转向效益。建议在统计档案利用项中增加利用效益项目,强调社会效益的统计,如增加利用者满意度或者利用效果项目,将利用者的需求满足状况以顺序数据的形式列入统计项,以反映利用者对档案价值的认知与认可度。二是完善数字档案利用情况统计,根据数字档案资源利用的特殊性,设置数字档案和电子文件的检索量、阅读量和下载量等统计项目。
做好利用统计工作的信息化建设。大数据时代,传统的手工登记、电脑汇总的工作模式正在失去其原有的意义。必须加快利用者自助服务终端设备、服务质量评价设备、统计软件的应用,以及信息系统的建设。利用者在自助服务终端设备上验证身份后,其利用记录及其在获取服务之后对服务质量做出的评价,都将实时传输到信息系统中自动存储。
做好专业人员配备。大数据将使利用统计工作大量化、复杂化和专业化,要求工作人员必须具备一定统计理论和实务素养。因此,要及时对相关工作人员进行专业培训,同时要把统计工作具体实践中的经验、技巧、成果等在工作人员中进行交流,便于工作人员相互借鉴、相互促进。
做好利用情况的统计分析方法运用。利用情况统计分析,是档案利用统计的最后一个阶段,在这个阶段中,通过运用各种专业的统计分析方法,使我们能够对利用情况进行清晰明确的全面认识,并依据统计分析正确估计形势,为决策提供依据。例如,对于历年的利用人次和卷次数,我们可以运用时间序列的描述性分析,通过计算数量的增长率、平均增长率来简单描述现象在不同时间的变化状况,也可以通过制作图形先观察数据随时间的变化模式及变化趋势,为进一步的预测提供基本依据。进行预测时,我们首先要判别历史数据模型是平稳序列、线性趋势,还是非线性趋势,然后结合数据多少选择用移动平均、一元线性回归,还是指数模型的预测方法。
做好利用统计成果的运用和宣传。通过统计分析,我们可能会发现统计档案利用的某些规律,如利用者的喜爱,也许还能够合理预测趋向。统计部门应该积极主动地将这些统计成果运用到服务工作中去,及时调整服务重点或者提前做好服务计划,甚至做出明确的统计预测预警。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09