创建大数据公司之前你需知晓5件事
大数据现如今如火如荼的在开展,但是成立一个大数据公司也是困难重重。Infochimps的收购让我想起那些因第二轮融资未实现而关闭的公司。Drawn to Scale,Ravel Data和Nodeable只是被关注的重点而已,但是我坚信还存在更多没有走进我们视野倒闭的公司。
取代为这些创业失败的公司惋惜,我更倾向于从那些成功或者倒闭的大数据公司上提取经验并提供给那些准备开始自己旅程的创始人。下面有很多的解释,但是简而言之:明智的选择好你的战场,明智的选择你的客户,并围绕你的技术建设一个社区。
1. 基础设施的困难性
不仅基础建设工具困难,而且出售它们也同样的困难。当你在讨论诸如Hadoop、NoSQL数据库和流处理系统等大数据基础架构工具时可能同样也是困难重重。客户可能会需要很多的教育指导,而那些付费用户期望可能得到更多的技术支持和产品开发的细节,从而能及时的解决他们的问题。
通常情况下,这需要很多的资金,同样也需要在部署和支持这种系统和系统集成方面有经验的人才。如果你拥有这些资源,那么这将是非常完美。
作为参考,在2010年时,Greenplum在这些基础设施方面投资了近1亿美元,但是它仍然不够,因此Greenpium被EMC收购。如今最具知名度的大数据公司在初创时都投入了与cloudrea相同或者更多的资金。基础设施初创公司只有几百万的种子基金,这使得它们在第一轮融资前会有一个艰难的道路。
但是你仍要去说服许多公司去部署你的产品而忽略它们已经熟知或已具有相当人力和物力的公司产品,诸如Cloudera, Hortonworks, 10gen, Amazon Web Services, IBM, Oracle等公司。
应用程序——无论他们专注于特定工作负载或行业,或像数据可视化一样适用于广泛的任务——是很容易的。精心打造它们或许比较困难,但是潜在的客户可能会马上 看到它的使用价值,以及对比当下使用工具的优劣。你也可以直接把它销售到业务线,这样避免了中间层从而减少更多的摩擦和风险。一旦你开始谈论添加或替换关键系统,或将敏感数据放到一个新地方,事情可以才能够真正的快速运转起来。
2. 云计算是你的朋友
重要的是,无论你是销售基础设施还是应用程序,云仅仅是一个更有效的方式来经营你的企业。这并不意味着需要将它交于一个云供应商来托管,但你要把它作为一种云服务来提供给你的客户。最终,你将对你的产品拥有更多的控制权和更深入的了解,因为它针对了一组特定的资源进行优化。
这意味着没有进入客户账户并针对现有类型的服务器和系统进行设置。可能仍然有一些定制用以连接服务与用户其它类型数据源。然而这样做并没有太大的优势。这也意味着,公司需要将大部分的精力投入到产品开发上。
云计算同样易于潜在客户去建立伴生产品,这从New Relic与AWS的关系上不难看出。越容易上手、操作及变现,就越容易证明以后它可以作为一个单独的项目存在并扩展到更多的场景中使用。
显然,这不可能在所有的情况下都能行得通,尤其是当你在讨论企业所不希望或不能送入云中的软件和大容量数据。事实上,较大的企业把提供云服务作为一般的传统软件给了许多的大数据初创公司很大的压力。如果有利可图,这或许是一个明智的决定,但不管怎样,这绝不能轻视。
3. 开发者是你的伙伴
因此,为开发人员服务。如果你就像 ClearStory , Platfora , CRM的任何一员和市场应用做分析业务,那么分析师是你的朋友。无论以哪种方式,对目标客户而进行的针对性的研发努力和营销努力或许都会是一个好的主意。CIO看起来并不是一个很好的目标受众。
我认为有件事Infochimps可以做的更好,如:它推动Wukong和Ironfan技术面向普通的开发用户。 前者让你可以像写Ruby脚本一样的去编写Mapreduce和streaming作业。后者是一个Chef工具,可以让你轻松地配置,部署和管理大数据。
我认为Infochimps和Continuuity所从事的的业务之间不只有一点的共同之处。 但是 Continuuity完全从开发者角度出发,他们在宣传语中喊出了这一点并且声称有更简单的方法来使用产品。这意味着他们可以在做大交易的同时可以在后台积累下大量坚实的用户群。
4. 不要吝啬去展示你的数据科学家
我认为展示你的数据科学家这是一场营销运动更是一种销售手段,但是确实至关重要。数据科学家是一些向人们展示他们数据和他们的平台有什么可能性的人,同样数据科学家也是人们在会议上想听的人。 几乎所有人都热衷于Hadoop和NoSQL。也没有什么必要再去讨论Hadoop和NoSQL它们的优点,同样没有需要去重复数量、种类等的定义谈论配置和系统集成是重要的,但是感兴趣的是少数的观众,除非你们在谈大规模的运作。谈论配置和系统集成是重要的,但是感兴趣的是少数的观众,除非你们在谈大规模的运作。Cloudera比它竞争对手获得更多关注和发言的原因有很多,而其中一个就是Jeff Hammerbacher。不要只是空谈去储存或处理数据和基础设施—— 能告诉我什么样的产品,我可以去构建它,什么类型的分析,我可以在其上运行。最起码,证明你正在更广的范围内去思考数据而不是仅仅用最新的方式来卖我东西。
5. 开源不是关键,而要把开源变成关键
几乎每一个大数据初创公司都依赖与开源软件。其中一些初创公司借用像Hadoop、Storm和其它各种类型的数据库,另外一些则已经创建开源软件。在很多情况下这两种情况是相互结合的。比如,为HBase添加一些功能,这些项目之所以会如此人气,一部分的原因就是因为社区。
我从未试图去开展一个开源运动,我认为这是一个艰难的工作。但我知道,在Github上放置一段未完成的代码并置之不顾并不能解决问题。Facebook和谷歌可能会根据喜好随便发布代码,但大多数创业公司不应该傲慢的认为他们的开发团队是最棒的,已经没有任何东西值得他们学习。
毕竟,开源的目标是让人们在相同的代码上致力研究从而去改良它。看起来你有必要走出去,发扬这项技术并且解释它为什么如此的重要,以至于吸引越来越多的人想要去破解它。这一点可能会吸引许多的开发者,但是走免费增值的路线可能会让更多的人去尝试使用这个产品,这样他们就可以看到这种产品是否值得他们去投资。
我无法计算拥有自己开源产品的公司数量,但是那些一直致力于开源和社区建设的公司的确很杰出。我们所说的供应商创业公司如 Neo Technology 、 Concurrent 、10gen甚至是终端用户公司,如Twitter的养成计划Storm和Mesos。它们在周围已经建立了一个开源社区,并且因此它们获得了丰厚的回报。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10