京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据变革再认识
大数据的应用从需求角度出发,是物联网的兴起。随着互联网逐渐过渡到物联网,网络中互联的主体可以不再是人,可以是智能终端、传感器,乃至可穿戴设备。人们的各方面信息正通过无处不在的物联网被采集、汇总和辨析,人类的生活最终进入虚拟化。数据得到爆发式增长,且成本越来越低。大数据革命正在对世界产生巨大的系统性影响和深远意义。早在2012年美国就发布了《大数据研究和发展计划》,并成立了“大数据高级指导小组”。欧盟也正在力推《数据价值链战略计划》,英国发布了《英国数据能力发展战略规划》,日本《创建最尖端IT国家宣言》和韩国的“大数据中心战略”也陆续出台。
上世纪80年代,未来学家托夫勒在那本闻名世界的《第三次浪潮》一书中就预言过:“如果说IBM[微博]的主机拉开了信息化革命的大幕,那么大数据才是第三次浪潮的华彩乐章。”因此,大数据作为未来国家发展的基础设施,我国不应该落后于其他大国。可喜的是,国家级《关于促进大数据发展的行动纲要》于2015年8月19日正式通过,标志着我国已经启动了大数据的后发之势。因此,最为这一过程的莅临者更多是谈几点我对大数据的几点体会。
世界的本质是数据
大数据有诸多定义,从麦肯锡的技术定义到维基百科的一个范性的概括,再到IDC(国际数据公司)被广泛接受的四个特性——4V,即海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)和巨大的数据价值(Value)。大数据告诉了我们,现在以及未来的社会,数据至关重要,数据成为我们分析、决策的前提和基础。
何为数据?就是有根据的数字编码,这是人类度量世界万物的一个尺度。早在古埃及,人类已经学会了通过数据来计量财富和日常的生活。欧洲的文艺复兴后,数据开始进入人类的意识形态,可以刻画自然乃至人文规律。随着近现代信息技术的发展和数字化进程的日益深入,数据逐渐脱离了仅仅作为刻度表征的特性,成为世界万物的量化映射。世界可以通过数据来表示,人类也可以通过数字化的信息对世界进行再认识,数据最终实现了主体地位,是客观存在的一个体系。这也验证了古希腊哲学家毕达哥拉斯“数是万物的本原”的思想,世界的一切关系皆可用数据来表征。
大数据是方法论
如果说大数据是方法论,更多是分析、解决问题的一次变革。数量经济学告诉我们,一个经济过程的刻画,背后潜在的原理是通过一般模型出发,参数靠近理论在样本的空间内进行估计和检验,实现经济过程的模型简化,来探讨和发现一种因果关系。因此这一过程难以避免分析主体依据变量对样本进行必要的加工或调整,而大数据实现了用数据说话。先前分析问题的方式是一种小样本的思维模式,建立在分析问题信息相对不全面的前提之上(样本数据往往具有“一次性”)。
大数据理论的提出,本身基于海量数据,是一种全数据的思维方式,通过数据挖掘来获得数据本身的含义,Let data say!因此,大数据强调的是整体、多样、关联、动态、开放、平等的新思维,通过关系的相关性来变革认识事物的方法。同时通过海量存储、云计算、数据挖掘等信息技术实现思维理解的物理转化。
大数据是国家整体竞争力的体现
大数据是国家未来现代化发展的基础设施,因此大数据的实现必然是高投入、高技术门槛、周期长、资源匹配效率高的建设过程。不仅涉及建设的软硬件,而且关于日后的管理、运营和相关服务的配套,是国家整体实力的体现。从广义层面上讲,大数据是由海量数据集合和对这些数据进行存储、处理、分析的技术所组成的综合性概念。那么从大数据的概念上理解,大数据基础设施的建立必须形成以大数据为产业链条、纵横交错的生态环境。纵向来看,处于底层的是IT技术的开源项目,在这之上的是基础架构、证析和应用。横向来看,依次是基础架构、证析和应用,其中的应用又必须依靠数据源。这样看来,大数据真正从实现到最终的应用,国家层面需要在人才、财税、科技金融等方面设计有利于数据人才和数据产业发展的政策,逐步建立有利于大数据金融研究与发展的制度法规体系。
最后,我想强调当前数据的开放问题。大数据的前提一定要落脚到数据,当前我们国家存在数据割裂、统计口径不统一、数据重叠与失真等问题,这些都将严重制约未来大数据国家规划的全面实现。因此,当前重中之重需要对“数据孤岛”问题进行妥善解决,首当其冲是政府数据的整合和梳理,亟需中央政府各部委、地方政府间、各级监管机构等部门达成数据的流动与共享,同时在一定程度上实现部分数据的社会公布。因此,这需要政府进行顶层设计,建立法律规章,实现政府信息保密、私人信息私权向公权的让渡、统计口径的统一、数据清洗等工作。毕竟美国的数据开放,从1789年通过的《管家法》(House-keeping Act)到1966年通过的《信息自由法》(Freedom of Information Act),历时近200年彻底建立了相对完善的美国数据开放制度体系。同时,大数据也并非一定是灵丹妙药,它也肯定存在局限性(我们很难界定什么是“全数据”,只是一个相对概念),需要我们决策者用一种理性思维来认识并使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03