大数据系统与关系型数据的共存
大数据在2011年崭露头角,2012年一飞冲天,它可能会以一种戏剧性的方式改变数据管理的很多方面。大数据系统给管理和操纵计算机数据、连续提取、转换和加载功能、运作商业智能、动态大数据以及基于云的数据仓库等等都带来了变化。
不过,随着大数据进入2013年,已经没有什么系统技术能比NoSQL数据库和Hadoop框架更活跃了,看起来这两款产品还有更大的发展空间。根据MarketAnalysis.com 2012年的一份报告看,单单是Hadoop-MapReduce市场,预计复合年增长率将达到58%,在2018年将达到22亿美元。
NoSQL和Hadoop的出现主要是为应对非结构化数据的,比如文本数据或者web日志。就像Apache Hadoop一样,这些技术通常是从开源起步,逐渐成为新的商业产品。
Judith Hurwitz是Hurwitz and Associates公司的总裁兼CEO,该公司位于美国马萨诸塞州,她认为大数据架构和大规模并行处理大大改变了数据景象。她说:在此之前,即便数据真的对公司很重要,人们也没有能力获取巨大数据量并进行实时分析。
她认为:现在,不现实的东西正变得实用。这种情况已经把数据带出了舒适区。
SQL受创,即将回击
我们可以在网站上看到,2012年伊始,对主流关系型数据库陷入困境的预测就出现了。部分预言已成为现实。SQL关系型数据库在与未来几年可能成为其替代品的产品经过一系列斗争之后,现在(或者很快)似乎面临着关于处理整个企业大数据量过滤的最为剧烈的竞争。
这一趋势背后的推动力是企业对以更快的速率获取更多非结构化数据的渴望,这样企业才能更加依靠数据驱动做出决策。惯用的处理方式正在改变,以适应最好的新技术。
这些来自2012年特定数据管理供应商的举动展现出大数据和Hadoop对关系型数据冲击的现状:
IBM公司还在继续创立小型数据和分析公司,尽管比2011年少了些。蓝色巨人的努力方向从小的改进(比如,针对DB2 10的NoSQL图形库和InfoSphere Warehouse 10)到非常巨大的PureData系统装置,目的都是为了给企业搞定大数据。
甲骨文公司在年初推出了大数据设备。这一发布是紧跟着Oracle NoSQL数据库2.0之后发布的,Oracle NoSQL数据库2.0已经自动实现重新平衡,新的应用编程接口可以处理大型对象,与Oracle数据库有更紧密的集成,支持直接用SQL查询Oracle NoSQL数据库记录。
微软公司展示了Hadoop对Windows Azure和Windows Server支持的预览;Teradata公司发布了其Aster大数据分析产品;而Informatica公司发布了PowerCenter套件的大数据版,据说消除了Hadoop手工编码的需求,并把编程任务带入了Informatica开发环境。
SQL在2012年可能只有一两次回击,但是它积极应对市场挑战的举动有重要意义。在非主流NoSQL和Hadoop方面比较专业的公司更新了他们去年的SQL认证。一个典型的例子是Hadoop创立了Cloudera公司,该公司期望增强SQL与Impala的协作程度(Impala是一款Hadoop软件产品,支持标准SQL做交互式查询)。
大数据的变动
这样的举动可能代表了一定的势头人们看到SQL和NoSQL一起被提及的机会更多了。在某种程度上,SQL在早期大数据喧闹的讨论中有点被淡化了。
Ronnie Beggs是美国旧金山SQLstream公司的副总裁,该公司是一家流媒体数据库制造商。他说:在过去的几年里,由于大数据运动,SQL已经不再挂在每个人的嘴边了。同时,他还说:大数据和NoSQL双剑合璧,已经冲击到了主流。
他还表示,在2013年,我们应该会看到明显的变化,并提到近几年在使NoSQL数据库更好地适应SQL风格的开发方面所作出的各种努力。
Beggs说:它是不断变化的。我们接下来这一年会看到SQL的回归,它将成为所有大数据平台的接口。
这种发展走向了Hadoop框架、NoSQL和SQL方法的共存,这标志着在大数据的成熟度方面迈出了新的一步。2013年,大数据有可能从一个热门话题变为切实的实践。
Colin White是美国俄勒冈州Ashland BI研究机构的总裁和创始人,他说:我认为人们正努力通过大数据的炒作,来真正理解业务价值。在2013年,我认为我们将看到人们从大数据中获得业务价值的优秀案例。问题不在于大数据本身,而在于你的运用。
虽然企业对新技术有着广泛的兴趣,但不是所有公司都会以同样的程度全面部署大数据系统。关于这一点,在最近TechTarget举办的一次重点银行会议上,一位集成服务经理也有所提及。
他认为银行业只有部分涉足了基本的大数据,而不是全部。银行和其它领域只看到了大数据的数量,而没有留意到它的非结构性。至少目前还是这样。
他谈到:大数据的含义有两部分。第一部分是它们的量很大,第二部分是数据为非结构化。银行明显属于第一部分。但是我们不会去收集tweets,至少目前还没有。我们还在观望,等待金融数据服务市场的应对。(文章来自:CDA数据分析师)
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20