大数据对教学的影响
随着时代的发展和科技的进步,“大数据”时代悄然来临。随着硬件的高速革新化与软件的高速智能化,大数据时代也对高校教育领域产生了广泛而深刻的影响。大数据就其性质来说,不是产品,也不是一种技术,而是一个抽象的概念,有人将“大数据”形象地比喻成21世纪人类探索的新边疆,是以高度发达的信息网络技术为支撑,所呈现出的巨大数据信息,当然包括伴生的相关处理技术。大数据是近年来继云计算、物联网后的新技术热点。
大数据具有4V特性,包括海量的数据规模(Volune)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)和巨大的数据价值(Value)。而就数据的实用价值,IBM认为还应具有第五个V特征,就是真实性(Veracity),在日常工作和学习中,数据信息真实性的好处不言而喻,对教育领域来说,更是最基本的要求与保障。要利用大数据时代的巨大资源为教育服务,教师的选取和甄别手段更显得尤为重要,从这个层面上来说,数据的真实性在一定方面上制约着教师教的内容和学生学的内容。
大数据时代给传统的教育提出了挑战,由于自身特点,它给教育提出了教育对象的个性化发展、教育方式的变革、教育观念的开放化、管理的科学化等要求,更有利于素质教育的开展。大数据时代的数据具有信息量大、形式多样、实时性强和价值多元等特性,因此教育模式和教育理念只有关注人的多样化发展才能培养出高素质人才。然而,与此相矛盾的是,传统的教学方式强调教师的主体地位,为了便于管理和保证教学效果,教师最有效也最轻松的方式就是以标准化来要求每一位同学,表现于统一的教材、统一的作业、统一的考核和对学生单一的评价方式上,这不仅不利于发挥学生的主动性,长此以往,更限制了学生的思维方式与视域,无法满足学生个性化发展和大数据时代对高素质人才的需求。
要想利用信息时代的数据更好地应用于教育,必须变革教学方式,对教师提出新的要求,教师不仅要树立终身学习的理念,还要更好地掌握学科前沿的动态信息,更好地利用数据的开放性、共享性等特点,充实学习内容,提升教学水平。以“慕课”和“小微课”平台的问世为广大学生所熟悉和利用,丰富和发展了在线教学模式,这更需要教师不断调整,告别传统的授业者的角色,以学生为主体,以技术为手段和平台,成为知识学习的组织者、引导者和评价者。
除了促进个性化发展、丰富学习内容和提高学习效率,大数据技术的应用更有利于教师掌握学生的身心发展规律。与传统的教师通过面谈、电话交流、家访及其他同学侧面反映和凭借工作经验判断学生心理特征等方式,应用大数据技术,分析和测量学生的心理特点,通过对以前遇到的实际问题的解决方式进行归纳和总结,这种体察方式不仅更理性,还可进一步对未来的心理状况进行有效预测,能促进教师更好地了解学生,还能有针对性地促进学习效果,提高学习能力。
大数据背景下,不仅革新教育理念,对高等学校的管理也提供了新思路。高等学校的信息化进程中会产生大量的数据,包括教师和学生信息、学籍和成绩信息、注册与选课信息等,利用大数据技术管理这些信息,对帮助学校资源管理和教学方法等方面将会产生极大的便利。目前,高等学校的信息化系统正不断发展完善。除数据管理、校园网络和远程教育系统外,还发展了图书馆信息管理系统、数字化校园等,如何对这些系统产生的大量信息进行系统分析,在信息化背景下建设优质高校就显得尤为重要。其中,教学管理、学习行为、教学评估等,均受到大数据的影响。
在教育领域如何利用大数据及其相关技术促进教育发展,是一个漫长的过程,在此过程中机遇与挑战并存,作为教育人士,我们应抓住机遇,迎接挑战,紧紧握住时代的脉搏,更好地服务于教育。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22