大数据会改变人们的思维
一讲到大数据,通常都会提到4个V:量大(Volume),积累速度高(Velocity),数据的产生多源化(Variety),数据笼统噪音大(Voracity)。然而,这些只是对大数据在互联网时代超高速增长现象的描述。大数据真正的意义和价值是它改变了我们的思维方式。这就是大数据思维。
大数据思维能使我们在决策过程中超越原有思维框架的局限。每个人都是依据自己对现实的认识和判断而不是现实本身作出行动决策的。以数据为基础的智能决策有两个步骤。第一是对事物的理解和判断,第二是作出行动决策(不行动也是一种决策)。行动决策会受到决策者价值取向的影响。比如,二次大战末美国打到日本沿岸并调集了比攻打德国时诺曼地登陆更多的军舰云集太平洋准备对日本本土发起攻击。根据对攻占几个日本岛屿所造成伤亡数据的分析,美军预测攻占日本本土将要付出50万美军伤亡的代价。在这个判断的基础上,美国总统杜鲁门做出了向日本投原子弹的决定。结果是减少了美军的伤亡但造成了几十万日本平民的死亡和持续至今的辐射危害,其价值取向是很清楚的。
人们对事物的理解和判断会受制于自身思维框架的局限。一个物理学家在分析一件事物时,会很自然地应用物理定律来思考、理解和判断。所用的概念和语言也会有物理特征(时间、速度、场、重量、质量、作用力、反作用力等等)。一个社会科学家在分析一件事物时,脑子里出现的框架是人际关系、社会地位、历史背景、社会效益等等。所用的概念和语言带有社会人文特征。搞理论工作的和搞实际工作的思维框架也很不同,前者重视逻辑性、系统性,而后者更重视时间性和可行性。即使是同行业的人也会因年龄、经历、环境、学历不同而产生不同的思维框架。当同一现象和信息进入不同人的脑子里时,它会被不同的思维网路过滤、不同的思维方式处理,最后的结果是对同一现实产生不同解读。没有一个思维框架,我们无法理解和判断一件事物。但思维框架本身又对我们的认知产生了一个很难逾越的局限。
大数据思维不是从某个人的思维框架出发,而是让海量数据碰撞,寻找相关性,先看到结果再分析原因。这就冲破了原有思维框架的局限。比如,美国一家零售商在对海量的销售数据处理中发现每到星期五下午,啤酒和婴儿尿布的销量同时上升。通过观察发现星期五下班后很多青年男子要买啤酒度周末而这时妻子又常打电话提醒丈夫在回家路上为孩子买尿布。发现这个相关性后,这家零售商就把啤酒和尿布摆在一起,方便年轻的爸爸购物,大大提高了销售额。
大数据思维可以引发城市管理的新方法。自从美国大使馆每天公布PM2.5指数以后,城市空气污染的问题得到了中国各个城市政府和市民的重视。每天PM2.5检测数据的采集成为环境保护和管理的一个重要任务。如果一个统计学家按照原有思维框架来设计检测数据采集,他会从统计学原理出发在市区有代表性的不同地点定时采集和上报数据。其结果是数据量有限,费用高,检测覆盖率和准确率低。应用大数据思维,某市环保部门考虑将上万个手持检测仪发放给散居各处的市民检测并通过手机上传数据。通过手机定位,环保部门可以确定每个数据的测量地点和时间,大大提高数据采集的覆盖面和精确度。
大数据思维可以对历史数据的分析提供新思路。中国人讲究作学问要“读万卷书,行万里路”。用大数据思维,读万卷书在今天并非难事。美国的国会图书馆正在将藏书全部数码化。以后通过电脑“看书”搜索关键词,分析相关字条和数据将会非常容易,读万卷书可能只是几小时的“小任务”。美国匹兹堡大学公共卫生学院将记录在报纸、报告、微缩胶片上美国各地自1888年以来有关传染病发生和死亡的多元、碎片、海量的数据收集、整理并数码化。通过数据建模和分析,把一百多年的历史“死”数据变活,建立了1888至2010年美国50多种传染病电子数据档案库。用历史数据证明了免疫苗的发明和使用避免了一亿以上的美国人死于传染病。(见下图)
大数据思维能帮助开创新的商业模式。在美国出现的Uber打车服务和后来中国兴起的滴滴出行(原滴滴打车)是大数据思维产生的经典020(网上网下完美结合)新型商业模式。智能手机在移动互联网时代的普及使实时定位的数据传递和信息沟通成为可能。它为乘客和司机之间的商业交换提供了一个崭新的平台,改变了传统的电话叫车或路边招车,降低了沟通成本和空驶率,极大地节省了司机乘客双方的资源和时间。源源不断的乘车交易和时间地点的电子数据在高速地积累和储存。数据科学家们可以通过对海量数据的分析寻找规律以提高和改进乘客打车出行的体验,找到新的商机和推出新的服务。
大数据思维的核心是要意识到我们已经生活在一个互联网几乎无处不在的世界。互联网将各种信息仪器(手机、电脑、传感器、相机、摄像头、等等)联为一体(物联网),数码化的数据和信息在这个庞大的网上时时刻刻地传递、储存和积累。数码化数据可以被高速处理,而且已经成为新型的、甚至是最有价值的生产资料。矿物可以冶炼成金属、原油可以提炼出汽油,如何将数据加工成信息、产生智能、解决过去无法解决的老问题和开创新的管理和商业模式以产生新价值是对我们的挑战。而迎接这一挑战的第一步就是要懂得和理解大数据思维。
数据分析咨询请扫描二维码
数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22