Michael Stonebraker,数据库领域的布道者,著名的数据库科学家,美国工程院院士,冯诺依曼奖的获得者,第一届SIGMOD Edgar F. Codd创新奖的得主,曾担任Informix CTO。他在1992年提出对象关系数据库模型,在加州伯克利分校任计算机教授达25年,更是众多数据库公司的创始人之一,其中包括Ingres、Illustra、Cohera、StreamBase Systems和Vertica等,目前是麻省理工学院教授,所参与的项目包括:Aurora,C-Store,H-Store,Morpheus,以及SciDB系统等。
Stonebraker是SQL Server/Sysbase奠基人,87年左右,Sybase联合了微软,共同开发SQL Server。原始代码的来源与Ingres有些渊源。后来1994年,两家公司合作终止。此时,两家公司都拥有一套完全相同的SQLServer代码。也可以认为,Stonebraker教授是目前主流数据库的奠基人。
2014年12月12-14日北京召开的2014中国大数据技术大会(暨第二届CCF大数据学术会议)正在邀请数据库领域的布道者Michael Stonebraker,希望能有机会带大家领略大数据时代数据库领域的最前沿思想。
数据库领域的布道者Michael Stonebraker
2012年,他发现一个有趣的现象:相当一部分计算机学团体已重新制定了其研究课题,并加盟到了“大数据”大旗麾下,发觉大数据已然成为最时髦的术语。他结合自己在数据库(根据定义,数据库就是处理大数据的)领域侵淫多年,特撰写了四篇博文来解释他对“大数据”的理解。
他对大数据有如下四种含义:
大数据量、“小分析学”。此处的目标是对极大量的数据集使用SQL。对大数据集,没有人会用“Select *”来查询因为其返回太子节(terabyte)的数据使接收者无法应付。替代方案,则是对海量数据把注意力放在SQL的分析功能上,如count、sum、max、min、avg等,可辅之以group_by。我将此称作“小分析学”,以便把这个用例(use case)区别于下面的场合。
对大量数据使用大分析学。“大分析学”在此的含义是:对海量数据施用数据聚类(clustering)、回归分析、机器学习、以及其他更为复杂的分析手段。目前,用户倾向于采用统计学软件包如R、SPSS、SAS等来实现。其他方案是使用线性代数软件包,例如:ScalaPack或Arpack。最后,也有大量自行开发的代码在使用中。
大速度。其含义是:对电子交易、实时网页广告投放、实时客户针对营销、移动社交网络等应用,能够吸收并处理“灭火水龙带”式的数据涌入。此用例在大型网站公司和华尔街盛行,二者都倾向于自行开发。
大多样性。许多企业面临整合日益扩大的多种数据源,而数据格式千差万别,例如:电子表格、网页、XML、传统的关系型数据库等。许多企业认为这是最头疼的问题。从历史上来说,萃取、转置、加载(ETL)供应商在此市场上对有限的数据源曾提供服务。
他第一篇博文中专门讨论了大量数据的小分析学,尔后的三篇博文将运用实例论及其他三点,感兴趣的可以到Stonebraker的博客查看。(原文链接: 一、 二、 三、 四)
去年底,Stonebraker还参加了一期 Structure Show,谈论自己对数据库市场的观点,包括NoSQL和Oracle的未来,当然还有Facebook的MySQL问题。若使用或研究数据库技术的人想听整个访谈,请点击 这里。以下是一些精华摘要:
1. 单一模式不能包打天下:“任何我可以想到的垂直市场,相比传统的关系型数据库系统,总会有一些更合适的解决方案。”Stonebraker 如是说。事实上,这是他一贯的主张。但今时今日这一主张看起来更有说服力了。现在有用于数据分析的列存储架构,用于交易的内存架构,当然也有用于简单的键值操作及新数据类型的NoSQL架构。甚至图形数据库都开始步入商用。
2. 数据库领域可以有很多赢家:“将有3到5个,甚至6个非常不同的数据库系统架构成为赢家,而在每一类下都会有2到3个成功的供应商。”Stonebraker预测:“我的核心观点是,传统的关系型数据库系统将慢慢收缩,这一切转变也许需要十年。”
3. NoSQL会被广泛接受:“我的预测是NoSQL将意味着不止SQL。”Stonebraker说,“Cassandra和MongoDB已经宣布了类似这样的东西,如果你放下你的偏见,那么这种高级语言基本上就是SQL。”人们已经不那么看好单纯的底层语言的价值。Stonebraker认为NoSQL系统将来也要拥抱ACID。而这一切可能正在发生。
4. Oracle将感受到来自SAP的压力:“我觉得另一个非常有趣的事是SAP在数据库领域还没有得到很多关注,现在SAP的客户同时也是Oracle最大的客户。”Stonebraker说:“在这些巨头中,Oracle和SAP会好好地干上一架。”
现在说这个可能有点早了,我们也不知道SAP的客户将如何回应切换数据库的游说。不过Stonebraker补充说:“我的预期是,SAP会给客户一个信服的理由,让他们从Oracle迁移到HANA。”
5. Facebook会继续寻找MySQL的替代品,不过可能劳而无功:“Facebook面对的是这个星球上最难的数据管理问题之一。”Stonebraker说。“他们花了数年的时间尝试从MySQL迁移到别的系统,但是到目前为止还没有发现可以匹配他们规模的替代品。”
相比几年前的观点,Stonebraker现在的主张已经有所缓和。可能这是因为Facebook分享了他们在MySQL上做的一些努力,包括为了维持MySQL系统的运行所作的精妙的配置。然而这一缓和,与其说是对MySQL的支持,不如说是对Facebook的数据库改造的认同。
最后,Stonebraker的总结一如既往的幽默:“传统的数据库销售商提供的产品,它们的代码基础和25年前一样,现在正让它们退休的时候了。(文章来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06