Michael Stonebraker,数据库领域的布道者,著名的数据库科学家,美国工程院院士,冯诺依曼奖的获得者,第一届SIGMOD Edgar F. Codd创新奖的得主,曾担任Informix CTO。他在1992年提出对象关系数据库模型,在加州伯克利分校任计算机教授达25年,更是众多数据库公司的创始人之一,其中包括Ingres、Illustra、Cohera、StreamBase Systems和Vertica等,目前是麻省理工学院教授,所参与的项目包括:Aurora,C-Store,H-Store,Morpheus,以及SciDB系统等。
Stonebraker是SQL Server/Sysbase奠基人,87年左右,Sybase联合了微软,共同开发SQL Server。原始代码的来源与Ingres有些渊源。后来1994年,两家公司合作终止。此时,两家公司都拥有一套完全相同的SQLServer代码。也可以认为,Stonebraker教授是目前主流数据库的奠基人。
2014年12月12-14日北京召开的2014中国大数据技术大会(暨第二届CCF大数据学术会议)正在邀请数据库领域的布道者Michael Stonebraker,希望能有机会带大家领略大数据时代数据库领域的最前沿思想。
数据库领域的布道者Michael Stonebraker
2012年,他发现一个有趣的现象:相当一部分计算机学团体已重新制定了其研究课题,并加盟到了“大数据”大旗麾下,发觉大数据已然成为最时髦的术语。他结合自己在数据库(根据定义,数据库就是处理大数据的)领域侵淫多年,特撰写了四篇博文来解释他对“大数据”的理解。
他对大数据有如下四种含义:
大数据量、“小分析学”。此处的目标是对极大量的数据集使用SQL。对大数据集,没有人会用“Select *”来查询因为其返回太子节(terabyte)的数据使接收者无法应付。替代方案,则是对海量数据把注意力放在SQL的分析功能上,如count、sum、max、min、avg等,可辅之以group_by。我将此称作“小分析学”,以便把这个用例(use case)区别于下面的场合。
对大量数据使用大分析学。“大分析学”在此的含义是:对海量数据施用数据聚类(clustering)、回归分析、机器学习、以及其他更为复杂的分析手段。目前,用户倾向于采用统计学软件包如R、SPSS、SAS等来实现。其他方案是使用线性代数软件包,例如:ScalaPack或Arpack。最后,也有大量自行开发的代码在使用中。
大速度。其含义是:对电子交易、实时网页广告投放、实时客户针对营销、移动社交网络等应用,能够吸收并处理“灭火水龙带”式的数据涌入。此用例在大型网站公司和华尔街盛行,二者都倾向于自行开发。
大多样性。许多企业面临整合日益扩大的多种数据源,而数据格式千差万别,例如:电子表格、网页、XML、传统的关系型数据库等。许多企业认为这是最头疼的问题。从历史上来说,萃取、转置、加载(ETL)供应商在此市场上对有限的数据源曾提供服务。
他第一篇博文中专门讨论了大量数据的小分析学,尔后的三篇博文将运用实例论及其他三点,感兴趣的可以到Stonebraker的博客查看。(原文链接: 一、 二、 三、 四)
去年底,Stonebraker还参加了一期 Structure Show,谈论自己对数据库市场的观点,包括NoSQL和Oracle的未来,当然还有Facebook的MySQL问题。若使用或研究数据库技术的人想听整个访谈,请点击 这里。以下是一些精华摘要:
1. 单一模式不能包打天下:“任何我可以想到的垂直市场,相比传统的关系型数据库系统,总会有一些更合适的解决方案。”Stonebraker 如是说。事实上,这是他一贯的主张。但今时今日这一主张看起来更有说服力了。现在有用于数据分析的列存储架构,用于交易的内存架构,当然也有用于简单的键值操作及新数据类型的NoSQL架构。甚至图形数据库都开始步入商用。
2. 数据库领域可以有很多赢家:“将有3到5个,甚至6个非常不同的数据库系统架构成为赢家,而在每一类下都会有2到3个成功的供应商。”Stonebraker预测:“我的核心观点是,传统的关系型数据库系统将慢慢收缩,这一切转变也许需要十年。”
3. NoSQL会被广泛接受:“我的预测是NoSQL将意味着不止SQL。”Stonebraker说,“Cassandra和MongoDB已经宣布了类似这样的东西,如果你放下你的偏见,那么这种高级语言基本上就是SQL。”人们已经不那么看好单纯的底层语言的价值。Stonebraker认为NoSQL系统将来也要拥抱ACID。而这一切可能正在发生。
4. Oracle将感受到来自SAP的压力:“我觉得另一个非常有趣的事是SAP在数据库领域还没有得到很多关注,现在SAP的客户同时也是Oracle最大的客户。”Stonebraker说:“在这些巨头中,Oracle和SAP会好好地干上一架。”
现在说这个可能有点早了,我们也不知道SAP的客户将如何回应切换数据库的游说。不过Stonebraker补充说:“我的预期是,SAP会给客户一个信服的理由,让他们从Oracle迁移到HANA。”
5. Facebook会继续寻找MySQL的替代品,不过可能劳而无功:“Facebook面对的是这个星球上最难的数据管理问题之一。”Stonebraker说。“他们花了数年的时间尝试从MySQL迁移到别的系统,但是到目前为止还没有发现可以匹配他们规模的替代品。”
相比几年前的观点,Stonebraker现在的主张已经有所缓和。可能这是因为Facebook分享了他们在MySQL上做的一些努力,包括为了维持MySQL系统的运行所作的精妙的配置。然而这一缓和,与其说是对MySQL的支持,不如说是对Facebook的数据库改造的认同。
最后,Stonebraker的总结一如既往的幽默:“传统的数据库销售商提供的产品,它们的代码基础和25年前一样,现在正让它们退休的时候了。(文章来自:CDA数据分析师)
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20