本篇SAS读书笔记主要介绍SAS相关数据处理过程,譬如数据集转置、描述统计以及相关系数的计算。
5数据集转置
有时我们需要改变观测与列的关系,这可以用TRANSPOSE过程来实现。
先举一个合并观测的例子。
例1:假设我们对若干个病人先后试验了A药和B药,药效记录在val变量中,数据见表
为了进行统计分析我们需要把两次的药效存入两个变量,即两个观测合并为一个观测,用如下程序可以实现:
proc sort data=onecol;
by num;run;
proc transpose data=onecol out=twotest;
var val;
id test;
by num;
run;
例2:转置当然也可以是同时对多行和多列进行,比如下面的例子中原始数据集为4行3列,转置后变成了3行4列。
data mat;
input x1 x2 x3;
cards;
1 2 3
4 5 6
7 8 9
10 11 12
;
run;
程序如下
proc transpose data=mat out=matt;
var x1 x2 x3;
run;
6 描述统计
MEANS、UNIVARIATE和FREQ这三个过程用来计算简单的描述统计量。MEANS和UNIVARIATE过程对区间变量计算均值、标准差等数字特征,而FREQ过程对离散变量计算取值频数分布。
例1:要统计学生信息中的数学与语文成绩相关的统计量。
proc means data=student;
var math chinese;
run;
结果将输出相关的:样本数目n,均值,标准差,最小值,最大值
UNIVARIATE过程则可以计算较多的统计量,输出包括五个部分。第一部分是矩统计量。第二部分为基本的位置和分散程度统计量,位置统计量包括均值、中位数、众数,分散程度统计量包括标准差、方差、极差、四分位间距。第三部分为关于均值等于零的三种检验的结果,包括t检验、符号检验和符号秩检验。第四部分为各个重要的分为数估计。第五部分是变量的五个最低值和五个最高值。
FREQ过程可以考察离散变量的取值分布,在TABLES语句中指定要分析的变量。比如,我们想了解C9501中性别的分布情况,可以用:
注意:也可以在INSIGHT模块计算
7 相关系数计算
CORR过程用来计算变量的相关系数
例:计算变量x1,x2,x3两两之间相关系数
proc corr data=aa;
var x1 x2 x3;
run;
注意:也可以在INSIGHT分析模块的多元部分计算。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22