京公网安备 11010802034615号
经营许可证编号:京B2-20210330
本篇SAS读书笔记主要介绍SAS相关数据处理过程,譬如数据集转置、描述统计以及相关系数的计算。
5数据集转置
有时我们需要改变观测与列的关系,这可以用TRANSPOSE过程来实现。
先举一个合并观测的例子。
例1:假设我们对若干个病人先后试验了A药和B药,药效记录在val变量中,数据见表
为了进行统计分析我们需要把两次的药效存入两个变量,即两个观测合并为一个观测,用如下程序可以实现:
proc sort data=onecol;
by num;run;
proc transpose data=onecol out=twotest;
var val;
id test;
by num;
run;
例2:转置当然也可以是同时对多行和多列进行,比如下面的例子中原始数据集为4行3列,转置后变成了3行4列。
data mat;
input x1 x2 x3;
cards;
1 2 3
4 5 6
7 8 9
10 11 12
;
run;
程序如下
proc transpose data=mat out=matt;
var x1 x2 x3;
run;
6 描述统计
MEANS、UNIVARIATE和FREQ这三个过程用来计算简单的描述统计量。MEANS和UNIVARIATE过程对区间变量计算均值、标准差等数字特征,而FREQ过程对离散变量计算取值频数分布。
例1:要统计学生信息中的数学与语文成绩相关的统计量。
proc means data=student;
var math chinese;
run;
结果将输出相关的:样本数目n,均值,标准差,最小值,最大值
UNIVARIATE过程则可以计算较多的统计量,输出包括五个部分。第一部分是矩统计量。第二部分为基本的位置和分散程度统计量,位置统计量包括均值、中位数、众数,分散程度统计量包括标准差、方差、极差、四分位间距。第三部分为关于均值等于零的三种检验的结果,包括t检验、符号检验和符号秩检验。第四部分为各个重要的分为数估计。第五部分是变量的五个最低值和五个最高值。
FREQ过程可以考察离散变量的取值分布,在TABLES语句中指定要分析的变量。比如,我们想了解C9501中性别的分布情况,可以用:
注意:也可以在INSIGHT模块计算
7 相关系数计算
CORR过程用来计算变量的相关系数
例:计算变量x1,x2,x3两两之间相关系数
proc corr data=aa;
var x1 x2 x3;
run;
注意:也可以在INSIGHT分析模块的多元部分计算。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22