大数据将怎样改变互联网
随着大数据产业蓬勃发展,大数据技术及应用逐渐渗透、融入社会各个领域,并且推动互联网等产业加快转型升级。如何充分释放和利用大数据蕴含的巨大价值,无疑成为当下的热门议题。
传统行业“掘金”大数据
怎样给大数据下定义?“通俗地说,大数据就是量很大的数据,大到单个计算机无法处理。”工业和信息化部软件司司长陈伟此前在接受采访时介绍,目前,全球数据量每18个月就会翻倍,而由于产业链涉及数据采集、存储、分析、挖掘以及流通服务,大数据不仅改变着互联网的商业模式,而且还将重构互联网产业格局,并将人类带入互联网的全新时代。
经过多年积累,现在不少保险公司已占有大量线下数据,并圈定大批低赔付人群样本。作为互联网企业代表的百度,正与保险公司发展“深交”,通过对保险公司数据科学建模,利用人工智能算法海量计算,将这批具备相同特征的群体挖掘出来,寻找低赔付人群的准确性已超过了85%。
随着“双11”电商节临近,快递业紧锣密鼓地开始准备“迎战”。与保险行业类似,物流行业也在积极拥抱大数据。阿里巴巴利用菜鸟物流雷达预警,去年“双11”货品预测率达到90%,“双11”期间2.78亿订单仅用10天时间便已发送到位。
“因物流与商家供需信息不匹配,前年或者更早时货物送达时间甚至超过1个月,有人‘双12’还没收到‘双11’的货品……”阿里数据经济研究中心秘书长潘永花进一步介绍,结合商家销售数据和物流公司快递数据综合分析,可为物流公司提供智能物流解决方案。
伴随人们大步迈进互联网时代,各传统行业不断争相拥抱“大数据+”,云、网、端逐渐成为各行业重要基础设施体系。潘永花认为,从“端”的角度来看,除智能终端外,还有越来越多的App;从“网”角度来说,互联网、物联网、云和大数据都将是核心资源,而正是基于云、网、端的基础,才有了“互联网+”各种行业的化学反应。
巧用数据资源释放大能量
有人说,“IT”代表着过去,“DT”才代表着未来。这里所说的“DT”正是指的数据技术。也就是说,当下大数据核心技术成了诸多产业的发展驱动力。“人们逐渐意识到,数据是推动产业发展的动力,也将为今后各行业提供全新服务。它不再仅是业务的附属品!”Teradata天睿公司大中华区副总裁姜欣表示。
根据大数据产业发展需求,不少互联网企业不仅巧用大数据助力自身发展,而且也尝试逐渐向外界开放数据资源,推动传统企业在“互联网+”的大潮下转型升级。
“大数据与行业数据融合,可以产生‘核聚变’,迸发出新能量。”百度公司高级副总裁王劲告诉记者,百度正通过大数据技术识别各类目标客群,进行多维度分析客群搜索趋势、搜索行为、兴趣偏好,助力企业了解行业趋势、加强用户洞察、提升营销效果;此外,系列数据资源还能为网上舆情提供实时监控分析。
王劲介绍:“随着互联网用户趋于交互方式寻找服务需求,百度大数据预测未来5年使用语音、图像来表达需求的比例将超过50%。百度在语音识别、图像识别、自然语言处理等前沿技术领域,正在有针对性地进行重点突破。”
从政府角度看,如果能盘活政府机构大量数据资源,将更有利于融合并利用外部智慧,提升政府公共服务创新能力,提升社会运行效率。“政务大数据可让公众、企业深入参与政府治理,使政府与公众充分互动,实现政府对公众服务的精准化、个性化,使政府从单纯的管理角色向多元共治方向变革。”潘永花说。
大数据瓶颈消除在望
“目前,大数据产业发展主要遇到的障碍是数据的共享与互通,以及如何保障数据安全。”百度有关负责人表示。
潘永花坦言,目前我国大数据人才缺口大,相关的创新创业人才有待培养,而且我国也缺乏像发达国家一样的“大数据国家战略”以及“开放政府政策”,在标准、规范方面还存有各自为政的尴尬。
陈伟指出,国务院印发的《促进大数据发展行动纲要》提出要“加快政府数据开放共享,推动资源整合,提升治理能力”,此举不仅开启了数据共享的大门,而且也对各行业、各企业间进行数据互通起到引导示范作用,将有利于打破数据共享互通中的发展障碍。
同时,数据安全、数据共享等话题同样备受关注。“这是一场‘革命’,将对各行各业带来深刻影响,甚至改变我们的思维方式,但同时它也引发‘数据暴政’的担忧……”牛津大学教授维克多·梅耶-舍恩伯格在《大数据》中的这句经典话语,曾被业界津津乐道。
为保证数据安全,技术层面不容忽视。“从大数据存储、应用、管理以及隐私保护等方面应层层把关,有针对性地应对安全威胁。”王劲告诉记者,目前,百度综合采用随机干扰、散列、K-匿名、泛化等多种隐私保护手段,对用户数据实现了完全的数据脱敏处理,再供应业务方和合作伙伴进行使用,防止用户隐私泄露。
有人时常提及,“数据安全三分靠技术,七分靠管理”。潘永花对此也深表认同:“从运营管理层面上说,互联网企业须对数据安全有严格规范标准,建立数据安全保障策略以及各项应急机制。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21