大数据时代的个人信息保护
近日,关于网易邮箱用户数据库疑似遭泄露的消息在网上引起波澜,涉及数据达数亿条。此前,第三方支付机构也被曝出存在实名认证漏洞,还有一些第三方支付曝出泄露客户信息、账户被盗刷等问题。有调查显示,76%的被调查者认为个人信息在大数据时代更容易被泄露。在过去一年中,超过一半的受访者认为自己的个人信息被泄露过。调查中,对大数据使用以及个人信息保护立法,有20%的受访者认为要“加大惩罚力度,引入惩罚性赔偿制度”。
消费者看病后,接到保健服务、健康管理公司的推销电话;购车购房后,保险公司很快就跟消费者取得联系;生完宝宝刚离开医院产科的女士,推销奶粉、婴儿服务的电话、邮件、短信就络绎不绝,推销人员甚至直接加上了消费者的社交账号。不少用户在网上随意搜索地点、物品,很快就有相应的旅行产品、相关门类的商品出现在推荐栏。
这些非常常见的现象,反映出的共同问题都在于,消费者在完成某方面消费行为,或完成某类主题的网络浏览后,其个人基本信息悄无声息的被披露给相关的商品或服务供应商。如果刨除病毒攻击、木马植入因素,披露消费者信息的,很多情况下就是电商平台、医院、电信企业、汽车及房地产销售企业(直接转让信息);还有一种可能,是社交网络、支付平台、网络安全软件,或安装在手机、PC端的其他软件或消费者,或消费者浏览过的网站、使用过的手机应用,主动捕捉了消费者的个人信息,经过提取挖掘后作为重要的数据资产,与相关企业分享使用或出售给其他企业使用。
上述两种情况,共同特征就在于搜集、挖掘分析、对外分享或出售消费者信息,并未经过消费者本人的许可,或是故意将信息授权条款加入到内容繁复的网站登录、软件和APP许可声明之中。随着国内外网络企业跨界整合的提速,一些社交网络、第三方支付机构、电商网络及其他应用软件建立了密切的结盟合作关系,甚至通过并购整合,成为了同一家集团公司掌控的分支机构——企业鼓励消费者跨网站、软件应用相互绑定身份,借此可以验证消费者个人身份信息、社会关系信息、账户信息,结合个人网络行为信息、设备信息等多方面信息,开展更趋精确的数据挖掘和预测分析。
当企业可以非常精准预测消费者行为后,确实能够更有针对性的开展营销,提高客户服务水平,但从另一个角度来看,企业的行为方式也将变得更为智能化,可以更高效率的把握消费者痛点,实施消费者更难以抵挡的诱导和操纵。
数量更多、更为翔实、(经过多来源信息比对验证)精确度更高的消费者信息,商业价值非常可观。但很少有人意识到,多来源信息的结合,也意味着信息发送外泄的出口增多,大型企业实施数据安全管理的难度因而提升,一旦发生数据泄露,消费者多方面、多来源隐私信息就将毫无保留的呈现在黑客面前,甚至大庭广众之下。
非但如此,未经消费者个人许可,企业方面超范围开展的数据利用,还可能给消费者带来损失。美国计算机科学专家埃里克·西格尔在《大数据预测》就举例指出,已经有社交网站为用户提供未来职业选项的预测服务,也同时为雇主服务预测员工的离职倾向,后一指数较高的员工将很可能在毫不知情的情况下成为职场竞争的牺牲品。又如,医疗机构通过购买其他来源的数据,经分析预判某些病患经抢救仍将无法存活,就会拒绝救治这些病患。
笔者以为,国家有关部门应致力于分别从立法、行政执法、司法、公益救助四个方面,扎紧篱笆,加强消费者个人信息保护。在立法环节,应出台规范的消费者授权个人信息使用条款,网络企业以免费或低价产品、服务换取消费者个人信息授权后,需要严格依照授权要求开展数据挖掘分析,不得以任何方式在未经消费者许可授权或超出授权范围使用消费者个人信息(例如,不得在仅获得消费者个人基本信息授权的情况下,自行挖掘获取消费者的社会关系、账户,结合消费者个人网络行为等信息开展商业开发利用)。要提高对违法违规非法采集使用消费者个人信息做法的罚款数额,完善处罚方式,加大这方面违法违规案件的通报范围,形成强有力的震慑。
在行政执法环节,应明确公安机关、网络信息主管部门、市场监管部门等单位保护消费者个人信息的职责分工,各部门各司其职,有效加强重点监管,加大消费者个人信息保护的抽查力度,畅通举报渠道,严格依法依规处置这方面的侵权案件。在司法、公益救助方面,可以考虑以政府购买的方式,在各地设立消费者就个人信息泄露起诉相关企业的救助基金,为起诉个人提供部分资助,鼓励消费者运用法律手段维护合法权益。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22