大数据之安全漫谈
大数据(big data)、数据科学(data science)、数据挖掘(data mining)、机器学习(machine learning)、深度学习(deep learning)、模式识别(pattern recognition)、可视化(visualization)、自然语言处理(natural language processing)、推荐系统(recommendation system)、数据分析(data analysis 相较而言,这个是最不潮最实在的词了)、人工智能(Artificial Intelligence)、NoSQL 是2014年的IT潮词,他们从传统的金融、科研行业席卷到IT的各个角落,甚至是比较边缘的安全行业了,催生了一些诸如安全数据分析师(专家)的岗位,为了在和同事们聊天的过程不显得那么白痴,于是查阅了一些资料,来写写"大数据"在安全行业的应用。
大数据的发展,让我们看到了更好的数据收集、数据处理、数据存储、数据计算、数据检索与数据可视化方案,我们有了hadoop、spark、storm等优秀的计算框架,我们有了thrift、avro、Protocol Buffer数据序列化方案,我们有了flume、scribe、chukwa来完成分布式日志收集,我们有了kafka来完成消息队列调度,我们有了mongoDB、redis、cassandra、neo4j来完成数据的存储,我们有了elasticsearch、sphinx来完成数据检索,我们有了Gephi、D3、Graphviz来完成漂亮的图表。我们甚至有了日志分析领域的三剑客kibana-logstash-elasticsearch套装,然而我们在如此优秀的支撑环境下我们常看到的输出结果是什么呢?TopN攻击报表、攻击可视化地图(单指国内产品)。
我想或许是因为最关键的阶段-数据分析阶段缺失了。缺失或许是因为门槛较高吧,它综合了高等数学、线性代数、概率统计、机器学习等知识,而且必须与计算机基础知识(编程、数据存储)、行业领域知识(例如安全领域知识)与反复的模型修正才能发挥作用,而作用是否显著则取决于所解决问题的重要程度。大家在平衡了付出与收益后,就倾向于选择用代价更小的方法来解决问题(例如基本使用静态攻击签名特征,而很少使用动态行为分析未知攻击),但互联网支付行业的发展,云平台的发展,让我们看到市场还是巨大的,特别是在金融行业(电商、支付、理财)、云服务方面。
应用场景
场景1、仿冒站点的检测
计算网页相似度,包括内容(文本)相似性、结构(DOM)相似性与视觉相似性。 其中文本挖掘(Text Mining)/自然语言处理(Nature Language Process)已经单独成为一个分支了。
场景2、垃圾邮件检测
基于朴素贝叶斯分类算法
场景3、订单欺诈检测
基于神经网络算法来实现交易数据欺诈检测
场景4、攻击源识别
基于CART来区分访问源,然后细化机器行为,扫描器?爬虫?搜索引擎?采集器?CC攻击,产出攻击源信誉库(匿名代理,Tor,扫描器,恶意爬虫,僵尸网络,URL黑库)
区分对待大规模自动化攻击,精细定位人工攻击才能有效的减少冗余数据
场景5、web攻击中的异常请求检测
基于HMM来识别异常请求;基于随机森林来分类区分异常请求
场景6、webshell检测
包括通过计算信息熵来检测文件内容异常、图论来检测访问异常
场景7、恶意网站识别
场景8、广告欺诈检测
场景9、恶意软件(家族)识别
场景10、色情图片/验证码识别
场景11、反网站抓取(盗取网站原创内容)
场景12、流量型攻击检测
CC、精准洪泛攻击(我自己编的术语,意思是对API接口的海量调用、例如短信接口、验证码接口)、垃圾信息注入
产品化道路
1、集成到IDS/IPS/Firewall/WAF/SIEM/审计/风控/取证/AV等单独或综合性的安全产品中
几乎每个安全产商都会用“大数据"、“机器学习”、“安全智能”、“基于业务的动态行为建模”当成卖点,来标明自己是“下一代”安全产品
已有成功案例:Imperva
2、综合到日志分析产品中来支撑安全功能的实现
将web服务器日志、数据库日志、操作系统日志、邮件日志等进行关联分析,实现风险控制、审计管理、监控、SIEM(攻击事件响应与取证)。
已有的成功案例:sumologic、splunk
对安全产品而言,宣传标语和奥运会类似
更快——不要滞后,发现与响应都要快,滞后的安全不是健康预防,甚至不是医生急救,而是法医验尸
更全——不要遗漏, 0day、未公开的漏洞,捕获他们,识别他们,评估他们
更准——不要误伤,预警狼来了运维人员很伤,访问阻塞用户很伤
瓶颈
“因为数据量巨大,会造成性能瓶颈,因此以处理的数据量为指标或宣传点”这是个误区,我们最最缺少的是有效的数据分析模型来发现“未知”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06