京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1进程和线程的概念
1.1什么是进程
一个进程就是在一个运行的程序,它有自己独立的内存空间,一组系统资源,每个进程的内部数据和状态都是独立的,例如在window是同时打开多个记事本,虽然它们所运行的程序代码都是一样的,但是所使用的内存空间是独立的,互不干扰.
1.2什么是线程
线程与进程相似,是一段完成某个特定功能的代码,是程序中单个顺序的流控制;但与进程不同的是,同类的多个线程共享一块内存空间和一组系统资源,而线程本身的数据通常只有微处理器的寄存器数据,以及一个供程序执行时使用的堆栈
1.3进程与线程的区别
1. 进程:每个进程都有独立的代码和数据空间(进程上下文) ,进程切换的开销大.
2. 线程:轻量的进程,同一类线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器(PC),线程切换的开销小.
3. 多进程:在操作系统中,能同时运行多个任务程序.
4. 多线程:在同一应用程序中,有多个顺序流同时执行.
1.4线程创建的两种方式
采用继承Thread类创建线程
该方法比较简单,主要是通过继承java.lang.Thread类,并覆盖Thread类的run()方法来完成线成的创建.Thread 类是一个具体的类,即不是抽象类,该类封装了线程的行为.要创建一个线程,程序员必须创建一个从 Thread 类导出的新类.Thread类中有两个最重要的函数run()和start().
通过实现Runnable接口创建线程
该方法通过生成实现java.lang.Runnable接口的类.该接口只定义了一个方法run(),所以必须在新类中实现它.但是 Runnable 接口并没有任何对线程的支持,我们还必须创建 Thread 类的实例,这一点通过 Thread 类的构造函数
public Thread(Runnable target);来实现.
2 单线程和多线程性能比较
以使用蒙特卡罗概率算法求π为例,进行单线程和多线程时间比较
2.1什么是蒙特卡罗概率算法
蒙特卡罗法(Monte Carlo method)是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解,故又称统计模拟法或统计试验法. --百度百科
蒙特卡罗求算法求π
第一步
画正方形和内切圆
第二步
变换表达式
正方形面积As=(2R)^2
圆的面积Ac=πR^2
Ac/As=(2R)^2/πR^2
π=4As/Ac
令P=As/Sc,则π=4P
第三步
重复N次实验求平均值
在正方形区域内随机生成一个点A,若A落在圆区域内,M++
P=M/N
π=4P,N的取值越大,π的值越精确
2.2 java代码实现算法
N取值为10000万,多线程的数为100,每个线程执行100万次模拟实验
线程实现
import java.util.concurrent.CountDownLatch;
public class ProModel implements Runnable {
public int N;//随机实验的总次数
public static int M;//随机点落在圆中的次数
private int id;
private final CountDownLatch doneSignal;
OBJ semaphore;
public ProModel(int id,CountDownLatch doneSignal,int N,OBJ semaphore2){
this.id=id;
this.doneSignal=doneSignal;
this.N=N;
this.semaphore=semaphore2;
M=0;
}
public void run(){
int tempM=0;
for(int i=0;i
if(isInCircle()){
tempM++;
}
}
synchronized (semaphore) {
add(tempM);
}
doneSignal.countDown();//使end状态减1
}
public void add(int tempM){
System.out.println(Thread.currentThread().getName());
M=M+tempM;
System.out.println(M);
}
//随机产生一个在正方形区域的点,判断它是否在圆中
public boolean isInCircle(){
double x=Math.random();
double y=Math.random();
if((x-0.5)*(x-0.5)+(y-0.5)*(y-0.5)<0.25)
return true;
else
return false;
}
public static int getTotal(){
return M;
}
}
多线程Main实现
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class MutliThread {
public static void main(String[] args) throws InterruptedException {
long begin=System.currentTimeMillis();
int threadSize=100;
int N=1000000;
OBJ semaphore = new OBJ();
CountDownLatch doneSignal = new CountDownLatch(threadSize);
ProModel[] pros=new ProModel[threadSize];
//设置特定的线程池,大小为threadSizde
System.out.println(“begins!”);
ExecutorService exe = Executors.newFixedThreadPool(threadSize);
for(int i=0;i
exe.execute(new ProModel(i+1,doneSignal,N,semaphore));
try{
doneSignal.await(); //等待end状态变为0, }catch (InterruptedException e) {
// TODO: handle exception35
e.printStackTrace();
}finally{
System.out.println(“ends!”);
System.out.println(4*(float)ProModel.getTotal()/(float)(threadSize*N));
}
exe.shutdown();
long end=System.currentTimeMillis();
System.out.println(“used time(ms):”+(end-begin));
}
}
class OBJ{}
单线程Main实现
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SingleThread {
public static void main(String[] args) {
long begin=System.currentTimeMillis();
int threadSize=1;
int N=100000000;
OBJ semaphore = new OBJ();
CountDownLatch doneSignal = new CountDownLatch(threadSize);
ProModel[] pros=new ProModel[threadSize];
//设置特定的线程池,大小为5
System.out.println(“begins!”);
ExecutorService exe = Executors.newFixedThreadPool(threadSize);
for(int i=0;i
exe.execute(new ProModel(i+1,doneSignal,N,semaphore));
try{
doneSignal.await(); //等待end状态变为0, }catch (InterruptedException e) {
// TODO: handle exception35
e.printStackTrace();
}finally{
System.out.println(“ends!”);
System.out.println(4*(float)ProModel.getTotal()/(float)(threadSize*N));
}
exe.shutdown();
long end=System.currentTimeMillis();
System.out.println(“used time(ms):”+(end-begin));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16