大数据时代 如何才能把营销数据落到实处
在大多数公司,营销人员负责评估市场竞争。因此,将近60%的信息专员都会向营销部门报告分析数据,然而大多数营销人员并不能战略性地运用这些竞争分析,只是不断收集而已。换句话说,他们只是对现在进行“快照”,而无法前瞻。
很多分析师都会埋怨:他们的营销负责人太重视竞争对手的各项数据了。
大数据时代的崛起似乎加剧了这一趋势。从全球著名的市场调研公司Nielsen到美国咨询公司Gartner ,再到市场研究公司IMS,这些专业大数据提供者紧盯市场动向,随时描绘市场图景。众所周知,财富500强公司的营销人员非常善于分析竞争对手的市场份额数据,甚至能精确到小数点第二位。
毫无疑问,大数据以及分析学正在改变营销面貌。但是并没有让营销变得更富有战略性,不过是更精确了而已。之前只是用同一个广告到处轰炸式宣传,而如今大数据使得营销人员可以根据用户的个人偏好和特定消费媒介有针对性地向不同客户群体投放不同广告。其对当下营销表现的改变,就好像导弹对当下空战的改变一样,但正如军事专家所言,空袭并不能赢得战争。
时至今日,很多营销人员已经拥有很多前所未有的科技工具作为“武器”,又拥有极先进的数据“侦查”方法。但他们似乎经常缺乏有效的“战略计划”,缺乏根据对方行动评估未来局势并进行反击的能力。
然而,有为数不多的个别公司却可以利用这些数据,从竞争情报分析人员那里得到更多战略价值。
集中精力关注战略框架
在总部位于比利时的中型制药企业UCB,作为战略营销实践的一部分,Heresh Rezavandi和他的经理Michelle Maddix-Sovero正在领导一个年轻的战略情报部门。Rezavandi的战略预警办法是从公司现有战略开始入手的,借鉴竞争战略之父Michael Porter的战略框架,考虑到替代品、买家和供应商,将纷纭复杂的竞争信息和未来预测综合分析。这能够帮助团队保持努力的方向。
加入UCB之前,Rezavandi在一家制药咨询公司工作,在那里,他目睹了管理者根本不知道究竟需要什么,只会说:“拣重要的通通报上来。” Rezavandi表示:“在加入UCB之后,我很快意识到,这里和咨询公司不同,信息收集不过是一切的开端。”
让高管层参与进来
在总部位于美国俄亥俄州辛辛那提市,提供高度专业化商业服务的制服企业Cintas,拥有3万名员工。其中1600名经理和董事都在一个返情报的协作区内,这1600人来自全公司各个级别、各个地区以及各个业务部门,公司最高领导层也都在这个协作区里。负责该公司竞争情报部门的主管Troy Pfeffer表示:“你想要情报,就要自己参与情报创建。”
Troy特别推崇这一方式。他表示:“询问情报的人,通常对该情报已经有了相关了解。忽略这一情报来源会降低情报质量。而通过让询问情报的人加入该情报的创建,你将大大提升采取行动的可能性,深挖这个组织的情报文化。”
洞察先机
2014年,英国罗得岛州东部城市沃里克一家私营科技服务公司Atrion有了麻烦。这家公司创建于1987年,一直以来,其核心业务都是IT基础设施技术的销售、安装和后续支持,其收入的80%都来源于此。但是,随着云计算渐渐成长起来,Atrion的客户突然发现有了更便宜的选择。
幸运的是,云计算的迅速崛起并没有让Atrion措手不及。2012年,Atrion的情报分析人员鉴定指出,云计算将成为首号战略威胁。Dave Ramsden和他的团队立刻开始跟踪相关数据,不放过任何哪怕最微弱的危险信号。随着云计算的采用率开始增长,他们拉响了警报。
于是在2014年,Ramsden的团队开始建立五年计划,根据历史表现给出预期增长,并在商业基础设施方面将当前增长和预期下降的可能相结合,给出备选方案。Ramsden还利用当时公开可见的情报信息,描绘出了战略地图,分析说明其它科技服务公司在不断变化的市场中做出的战略决策。这促进团队提出许多批判性的问题:Atrion究竟想成为什么?继续紧抓硬件这一块吗?还是成为云服务公司呢?又或者演变成一家专业服务公司?
公司决定提高对服务销售的关注,多多咨询客户,用心理解客户所需的业务。同时公司开始创新服务产品,使得投资组合更加多样化。截至2015年6月的财政年度,Atrion整体总收入增长了约19%,而服务收入增长了44%。
形成假设——然后测试
Man-Wai Chow在化学公司Eastman领导战略情报工作,他的情报流程是由假设驱动的。这些关于主要产业力量的假设,让其团队得以提供可行的商务见解。假设通常始于企业拥有的某些信念,这种信念或对或错。作为战略情报领导,他的任务就是打磨这些信念,对其进行测试。
Man-Wei的团队发展了这些假设(即观点),然后确定具体的路标或者说是先行指标,努力去验证并尝试这些假设。这里不得不再次提到Michael Porter的战略模型,它往往会帮助我们获得一个更清晰的观点。Chow 表示:“我们经常会提出‘假设’,防止自己鼠目寸光。我们和业务部门也会紧密合作,深入洞察,提高决策质量。”
很多公司仍认为营销人员只需要负责执行战略,而不需要参与战略的制定。但营销人员远不止销售工作而已,他们还可以促进战略和业务的发展。
但营销人员都知道,营销已经不再只仅仅是做做广告,发发新闻稿了。那个营销人员只需要简单设计下优惠券就OK了的时代已经过去。今天的市场营销包括数据科学和分析部门,需要收集和分析大量交易型的(仍然是主要形式)和字符类型的(挖掘社交网络)用户数据,来设计“最优客户体验”。最新科技工具可以作为辅助,但是无法代替精明的战略思想家。正如Man-Wai Chow所说:“算法无法超越人类智慧。”
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26