大数据产业化应用价值解析
大数据是当下科技应用的热土,传统企业在转型、升级等战略调整的同时,需要借助一些新兴科技作为企业发展的“左膀右臂”,助力企业增效、获益。随着IT的发展,社会经济“互联网化”愈演愈烈,大数据从前沿科技逐步走向寻常百姓人家的饭后谈资。大数据引领的“数据为王”的DT数据时代,正在昂首阔步的走来,大数据正在经历着产业化的变迁,数据应用价值亦然成为企业手中的一把利剑,在企业竞争角逐中无往不利,所向披靡。
数据之所以成为新商业经济社会的必争之物,在于它实际场景中的应用价值。
数据只有被应用到具体的商业场景和产业生产中才具有价值和意义,企业之所以将建立的交易数据库、客户数据库等视为企业核心竞争力,是因为得数据者得用户、得用户者得天下。企业之间的激烈竞争是商业社会优胜劣汰的必经之路,如何利用好数据,将之转化为有价值的数据财富应用到产业化场景中,是当下企业建立竞争壁垒的首要问题。
大数据包含收集、积累、处理、应用等一系列环节,其真正的价值体现在产业化的管理和使用,将数据作为产业链中不可或缺的驱动力、创新力,使其成为企业发展的“内核发动机”,从而促进整个商品经济社会生产与再生产,实现商业本质的最优化和服务的最佳化。
以下是大数据产业化应用的三个主要层面:
弹无虚发:精准营销
企业应社会需求生产商品,在生产过程中会遇到生产过剩或者商品滞销等问题,往往商品或者服务和消费者存在“一堵墙”的距离,这堵墙表现在产品或服务与消费者之间的巨大沟通成本。企业精准定位目标消费群体,选择性的为消费者提供商品、服务,但是在线上商店的商品无法精准的出现在目标消费者的视阈里,一个网络游客逛到一家在线商店,店小二无法知晓进店的是一条狗还是一个人,他(她)的需求都是无法捕捉和观察到的,没有量化的数据支撑网商的判断和商品推广,交易便难以产生。
不同于线下实体店的是,店员都会根据进店顾客的特征,多维度的判断他(她)可能存在的消费需求,长相、体型、性别、年龄等等店员都可以根据目测做出一个较为准确的判断,从而进行下一步的导购。大数据可以提供企业目标消费群体多维度的特征描述,以便将其“一网打尽”。
大数据是有着海量数据积累,大数据手段能够捕捉到用户的网络消费行为与消费特征,将其进行数据化处理,并且保留在云端,当用户再次出现在互联网上就会被监测到,经过一些列大数据算法,依据用户以往的消费数据信息,选择向用户的Web界面推送一些可能会购买的商品或者服务,实现精准营销,实现企业高效率、低成本、高ROI的规模化扩张之路。
以人为本:定制生产
定制生产是依照消费者的需求进行产品设计、生产,以满足互联网时代消费者日益丰富的多层次、个性化的消费需求。以往企业生产什么产品消费者就用什么产品的模式逐渐从市场褪去,企业开始看重细分领域消费者的需求,为其创造更好的服务体验,力争增加消费黏性和建立消费者的品牌忠诚度,提升竞争力。以人为本的企业服务理念被视为未来商业的可能,随着态势日趋转好经济大环境,“顾客就是上帝”的传统理念将会被重新定义。需求导向型产业需要大数据的分析模型,按需而策划、定制的产品是紧跟消费市场的,因此企业实行定制生产必须在设计、生产、供应、销售、管理、配送等各个环节上,都要适应小批量、多式样、多规格、多品类的生产和销售变化。大数据在其中起着挖掘需求、设计产品、建立渠道等方面的重要促进和指导作用,所有环节都要以消费者数据为出发点。
定制生产的产品,将会以高匹配被市场接受和认可,以消费者为中心的理念促进了企业资源的最优配置和排序,避免了产能过剩和定位模糊,数据驱动力一定程度上映射着商业的本质。商业的本质是商品和服务,商品或服务的使用价值体现在消费者对其功效的使用,数据是商品、服务量化了的指标和参数,数据会真实反映出商品、服务的市场适应性和方向性。
其中,如何检验收集到的数据是否有使用价值、可被利用性,可被当做定制化生产指标的等等问题,至关重要。这就要求企业要保证数据来源的科学性、逻辑性、准确性,企业的可持续发展需要多层面的共同协作。
高效匹配:两端桥梁
前面提到了精准营销和定制生产,实际上是从企业端和目标消费群体端来讲的,可以理解为B端和C端,C to B 的定制模式和B to C的精准营销是大数据目前应用最为广泛的场景。实际上大数据是链接目标消费者和企业的信息桥梁,两者在沟通环节中可能会遇到诸多问题,例如企业定位的偏差,消费者伪需求的传达,都会造成产业链的冗长和落后,大大增加了时间成本和投入了更多的沉没成本,致使效率低下,消费萎靡、滞缓。所以说,大数据会告诉企业应该生产什么样的产品,会告诉消费者企业产品与服务的差异在哪里。数据化的指标就像人体心率、肺活量、血压、血糖等等指数一样,能够准确反映出一个人的身体状况,大数据能够体现一个企业的状况,一个消费者的状况。数据不会说谎,只传达真相。
产业链的两端分别是企业和消费者,中间环节长度决定着双方反馈速度的快慢,产业链过长必然需要一定的时间来使双方做出反应,而经济市场瞬息万变,供与需是否能够及时得到平衡匹配很难保证。这就要求企业建立产业生态链条的全闭合和高效供需匹配机制,实时响应、反馈,把两端的利益契合点找出来并且进行组合搭配。
大数据的挖掘成本和价值含量,直接影响着企业对数据的信心,“有用”的数据才是大数据存在的意义,社会的高效运作离不开经济体之间的相互协作,大数据机制的形成和高层级应用是当下数据发展的方向,数据产业化蕴含着巨大的市场机会,而中国正在经历着数据时代的变迁。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13