基于大数据的精准营销与应用场景
大数据营销时代来临 营销学领域过去半个多世纪的发展让我们见证了从“以产品为中心”到“以客户为中心”的转变。随着近年来互联网、移动互联网、新社交媒体的发展,信息过载,数据爆炸、消费者个性化需求的凸显,消费者成为商业行为的主宰者;另一方面,大数据分布式存储、大数据分析及挖掘技术的发展使得对海量数据中收集、分析、整合并进行分析成为可能。基于大数据精准营销这个过程对企业的营销战略提出了很大的机会和挑战。
基于数据的营销基本过程:
基于大数据的精准营销过程分为:采集和处理数据、建模分析数据、解读数据这么三个大层面。通过对客户特征、产品特征、消费行为特征数据的采集和处理,可以进行多维度的客户消费特征分析、产品策略分析和销售策略指导分析。通过准确把握客户需求、增加客户互动的方式推动营销策略的策划和执行。
1、数据层:采集和处理数据
大数据处理的数据类型包括:括图片、文本、网页、社交网络,还有传统的交易数据。
不局限在传统采集数据的过程一般是有限的、有意识的、结构化的进行数据采集你能采集
2、业务层:建模分析数据
使用的数据分析模型,例如基本统计、机器学习、例如数据挖掘的分类、聚类、关联、预测等算法。
3、应用层:解读数据
数据指导营销最重要的是解读。传统一般是定义营销问题之后,采集对应的数据,然后根据确定的建模或分析框架,数据进行分析,验证假设,进行解读。解读的空间是有限的。
而大数据提供了一种可能性,既可以根据营销问题,封闭性地去挖掘对应数据进行验证,也可以开放性地探索,得出一些可能与常识或经验判断完全相异的结论出来。可解读的点变得非常丰富。
大数据营销数据类型:
人口统计学数据:包括用户的年龄、性别、国籍、注册时提供的信息;
用户行为数据:访问、页面停留时长、触点等。
用户内容偏好数据:感兴趣的话题、评论内容、品牌偏好、位置偏好、时间偏好等。
交易数据:实际订单、客单件、订单转化率、促销响应率等 大数据营销应用场景: 从企业营销应用层面上看,主要是围绕客户、产品、消费行为三大元素进行营销策略的制定和实施的。这三要素之间彼此独立又相互联系,每个独立要素都可制定营销策略,同时三要素之间的关联组合更是企业制定有效营销策略的关键。
应用1:客户价值识别(用户特征)
通过对用户交易历史数据收集;
进行RFM分析,定位最有价值用户群及潜在用户群。最具价值客户提高忠诚度;潜在用户:主动营销促使产生实际购买行为。客户价值低用户群在营销预算少的情况下考虑不实行营销推广。
通过因子分析,发觉影响用户重复购买的主要因素,从类似:价格因素、口碑原因、评论信息等信息中识别主要因素及影响权重,调整产品或市场定位。查明促使顾客购买的原因指导,调整宣传重点或组合营销方式。
应用2:用户行为指标:
通过对用户行为数据收集;
通过用户行为渠道来源的自动追踪:系统可自动跟踪并对访客来源进行判别分类,根据三大营销过程对付费搜索、自然搜索、合作渠道、banner广告、邮件营销等营销渠道进行营销跟踪和效果分析。
营销效用方面:知道具体的用户身受哪种媒体营销的影响,他们怎样进入特定网站,跨屏、浏览某个网站时他们会做什么。
根据地理位置分别设定目标,比如大多数中上层人士,居中位置比较集中。不在是笼统的客户群。
应用3:个性化关联分析
通过对用户购买了什么产品、浏览了什么产品、如何浏览网站等网站行为数据收集;通过分析客户群需求相似程度、产品相似度,通过个性化推荐引擎向用户推荐哪些产品或服务是哪些用户感兴趣的。他们在多大程度上被促销活动、其他买家对产品的评论所影响。
大数据精准营销面临挑战:
1、多渠道融合进行精准营销:全球数据爆炸、移动互联网、社会化媒体、可选渠道和设备增加、不断变化的消费者特征、营销自动化:营销和销售行为、供应链、客户关系都整合在一起。如何更好的实现将各渠道数据融合对提高精准营销的准确度提出挑战。
2、最近几年,互联网的产品呈现出一轮爆发性发展态势。尤其是移动终端的普及,使得很多传统的互联网产品也开始移动化。地理位置融入社会化媒体营销是精准营销要考虑的问题。
3、基于数据挖掘的即时营销:企业如今正在渐渐远离批量处理,转向实时分析来获取竞争优势。精准营销也要求在活动的同时我们就能得到数据,立即优化营销效果。
4、精准营销系统:自助式营销、可扩展的场景及营销规则管理功能。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20